
THE PLANNING COORDINATOR:

A DESIGN ARCHITECTURE FOR

AUTONOMOUS ERROR RECOVERY AND

ON-LINE PLANNING OF

INTELLIGENT TASKS

by

Jeffrey J. Farah

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering Department

Troy, New York 12180-3590

December 1992

CIRSSE REPORT #134

Section

Table of Contents

Page

1.0 Introduction

1.1 Motivation

1.2 Statement of Problem

1.3 Document Organization

1

1

3

4

/¢-- --

-L_

2.0 Background Theory and Definitions

2.1 Autonomous Intelligent Systems

2.1.1 Intelligent Machine Architectures

2.2 Intelligent Error Recovery in Automated Systems

2.2.1 AND�OR Graph Representation

2.2.2 Failure Reason Analysis

2.2.3 Sensor Control Software Methodology

2.2.4 Rapid System Reconfigurability

2.2.5 Real.Time Monitoring of Robot Control

2.2.6 Plan Feasibility Model

2.2.7 Causal Reasoning Model

2.2.8 Operating System Techniques

2.2.9 Summary

2.3 Fuzzy Logic

2.3.1 Fuzzy Logic Definitions

2.3.2 Previous Work Using Fuzzy Logic for Error Recovery

2.3.3 Summary

2.4 Generalized Stochastic Colored Petri Nets

8

8

9

12

13

14

15

15

16

16

17

18

20

20

2O

23

26

26

ii

f

Section Page

fl,,_ -

2.4.1 Petri Net Definitions

2.4.1.1 Ordinary Petri Net (OPN)

2.4.1.2 Arc Multiplicity

2.4.1.3 Place and Transition Ordering

2.4.1.4 Incidence Matrix

2.4.1.5 Firing Rules and Firing Sequences

2.4.1.6 Reachability Graph

2.4.1.7 Generalized Stochastic Petri Nets

2.4.1.8 Generalized Stochastic Colored Petri Nets

2.4.1.9 Inhibitor Arcs

2.4.1.10 Liveness

2.4.1.11 P and T Invariants

2.4.2 Previous Work & Theory on Petri Net Error Recovery

2.4.2.1 Verification of Error Recovery Specification

through Colored Petri Nets

2.4.2.2 Adaptive Design of Petri Net Controllers

for Automatic Error Recovery

2.4.23 Summary

2.5 Semantic Networks

2.5.1 Semantic Network Structure

2.5.2 Previous Work Using Semantic Networks

2.5.3 Summary

27

27

27

28

28

29

30

31

32

32

33

33

33

34

35

37

37

37

38

41

111

Section Page

f_

3.0 The Planning Coordinator 42

3.1 Intelligent Machine Model 42

3.2 Planning Coordinator Macro Architecture 46

3.2.1 The Current World Model 48

3.2.2 Shadow Coordination Level Petri Net 49

3.2.3 The Primitive Structure Database 52

3.2.4 The Node�Link Weighting Mechanism 53

3.2.4.1 Assignment of Relational F-Weights 54

3.2.4.2 Determining Overall Plan F-Weight

and Creating Plan Execution List 57

3.2.5 Mapping Mechanism 58

3.2.6 Error Recovery Generation Algorithm 60

3.2.7 System Fault Monitor 64

3.2.8 Summary 65

3.3 Planning Coordinator Communication and Interface Description 65

3.3.1 Internal Addressing Scheme

3.3.2 Internal Transmission Schemes

3.3.3 External Communication Link

3.3.4 Summary

3.4 Functional Description

3.4.1 Error Types: Definitions and Severity

3.4.2 Error Recovery

3.4.3 On-Line Planning

3.4.3.1 Short Term On-Line Planning

66

67

68

69

70

70

72

75

76

" iv

Section Page

3.4.32 Interactive On-Line Planning

3.5 Example Operation of the Planning Coordinator

3.5.1 Robotic Assembly Workcell: Strut Insertion

4.0 Research Goals and Proposed Work

4.1 Contributions To Date

4.2 Expected Contributions

4.3 Proposed Work for the Thesis

76

77

78

92

92

95

96

References 99

Bibliography 112

List of Figures

f_

w

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21

Figure 22:

Figure 23:

Figure 24:

Figure 25:

1: Brachman's Analysis

2: The Intelligent Machine Model

3: The Organization Level

4: The Execution Level

5: The Coordination Level

6: The Levels of the Intelligent Machine Including Planning Coordinator

7: The Planning Coordinator (PCOORD) Constituent Parts

8A: A Coordination Level Petri Net

8B: The Shadow Coordination Level Petri Net Equivalent

9: Functional Flow Diagram

10: Internal Planning Coordinator Addressing Scheme

11: External Communication Link Internal Architecture

12: Operation of Planning Coordinator In Error Recovery Mode

13" CIRSSE Testbed

14: IMM Hierarchy of CIRSSE Testbed

15: Representauve Global World Model

16: Representatave Current World Model

Representauve Underlying Semantic Network With Unweighted Links

Representanve Weighting of Object-Object Connection

Representatave Weighting of Object-Event-Object Connection

Representatave Primitive Structure Database

: GSCPN Generated For Strut Insertion

SCPN Generated For Strut Insertion

MLEE Recovery Net For Transition t2 of SCPN

SCPN Error Recovery Net Generated For Strut Insertion

Error Recovery Net For Error Number 2

40

43

44

44

45

46

47

50

51

62

66

69

74

78

79

83

83

84

84

85

85

86

87

87

89

91

..4

"V"

1.0 Introduction

This chapter introduces the motivation for the proposed research. It establishes the problem

domain, presents the problem statement and presents the organization of the remainder of the

document.

1.1 Motivation

Conceptually, the goal of any automated system has two goals. The first goal is to be capable of

performing specified, repetitive tasks more quickly and efficiently than a human predecessor or

counterpart could. Here quickly is defined in terms of speed, and efficiently is defined in terms

of quality, reliability, and cost. The second goal is to be capable of performing the first goal in

environments not conducive to the health or growth of human beings.

The goal of an x-autonomous system, where 3:' is a qualitative representation of the degree of

system autonomy, is to perform the previously delineated tasks in a robust, competent manner

with varying degrees of human intervention. This human intervention can range from complete

human control, teleoperation or telepresence, through partial human intervention, semi-

autonomy or telesupervision, to no human interference, complete system autonomy or simply

autonomy, except when specifically requested by the automated system.

The goal of an intelligent x-autonomous system is not only to perform a previously delineated

set of tasks. It must also be able to perform related and/or unrelated tasks. These tasks may be

the result of a physical and/or logical change in the x-autonomous system, a change in the

operation of the x-autonomous system, and/or a change in the environment in which the x-

autonomous system operates.

The ability to adapt to environmental changes, specifically from a structured environment to an

unstructured environment is of paramount importance in the development of intelligent x-

autonomous systems. It must be able to generate new task level plans and competently recover

from task level errors generatedduring task level operations. Without this capability, the

relating of theknownto the unknown is notpossible. Without theability to relatetheknownto

the unknown, intelligence is also impossible to obtain. Webster's Ninth New Collegiate

Dictionary defines intelligence in two ways as below:

1. the ability to learn or understand or deal with new or trying situations,

2. the ability to apply knowledge to manipulate one's environment.

To manipulate one's environment requires an understanding of the representation of the

environment. An environment can be considered to be a structured or unstructured relation of

arbitrarily complex objects and events that themselves may or may not be related. These events

(objects), although appearing to be a continuous stream of occurrences, can be viewed in all

cases, as sequences of discrete incidences. Viewed as discrete occurrences regardless of

complexity, complex discrete events can be decomposed into smaller, less complex, discrete

events.

Because an environment is changeable, the events that comprise it may be considered dynamic.

Hence the overall environment can be considered a Discrete Event Dynamic System (DEDS).

By definition, a DEDS, is a system that can be represented by an enumerable number of states.

Graphically, a DEDS, can be most succinctly represented by a Generalized Stochastic Colored

Petri Net (GSCPN). Analytically, the GSCPN, is an extension of Ordinary Petri Nets and has a

strong mathematical foundation. This foundation has permitted the development of numerous,

reliable analysis tools that are used to ensure the validity of the GSCPN properties. However, a

GSCPN, alone, lacks the relational information necessary to distinguish between similar (i.e.,

non-identical) events, identical events, or completely unrelated events. This inability requires a

separate GSCPN representation for each non-identical event. This need for many physically

distinct but logically equivalent representations creates the potential for state-space explosion.

During the atmmpted representation of a non-trivial environment and during complicated task

executionwithin an environment, the introduction of new information may be required. In

establishingthe necessarynew representations,state-spaceexplosion may also occur. This

limitation of theGSCPN is eliminated through the use of Semantic Networks with hierarchically

distributed sub/superclass relations.

Like the GSCPN, the Semantic Network (SNet) contains nodes, representing conceptual units,

and directed links, representing actions that relate one conceptual unit to another. The major

difference between GSCPNs and SNets is that SNets, due to their structure of hierarchical

abstraction and relational connectivity, can be used for inference as well as understanding, while

GSCPNs cannot. The relational quality of the SNet provides a natural limiting agent that

prevents the state-space explosion described previously for a GSCPN. Further, through the

application of linguistic weighting values appearing as fuzzy weights rather than crisp number

weights, a more natural and human relational hierarchy is possible.

The primary goal of this thesis is to develop a robust architecture that incorporates the strengths

of existing representation and reasoning methodologies such as GSCPNs, SNets, Fuzzy Logic,

Expert Systems, and Object Orientation, and results in an intelligent, stand alone x-autonomous

system.

1.2 Statement of Problem

Developing a robust, task level, error recovery and on-line planning architecture is an open

research area. There is previously published work on both error recovery and on-line planning;

however, none incorporates error recovery and on-line planning into one integrated platform.

The integration of these two functionalities requires an architecture that possesses the following

characteristics. The architecture must provide for the inclusion of new information without the

destructionof existing information. The architecturemust provide for therelatingof piecesof

information,old andnew, to oneanotherin a non-trivialratherthan trivial manner(e.g., object

one is relatedto object two under the following constraints,versus, yes, they are related;no,

they are not related). The architecturemust provide for the functional identification and

restriction of data types (e.g., Object Type, cylinder;, Restriction, circular top and bottom

possessinglength). Finally, thearchitecturemustbenotonly a standalonearchitecture,onethat

is capableof functioningon its own, but alsoone thatcanbeeasily integratedasa supplement

to someexisting architecture.

This thesisproposaladdressesarchitecturaldevelopment.Its intent is to integrateerrorrecovery

and on-line planning onto a single, integrated,multi-processorplatform. This intelligent x-

autonomous pla_'orm, called the Planning Coordinator, will be used initially to supplement

existing x-autonomous systems and eventually replace them.

1.3 Document Organization

The remainder of this thesis proposal is organized into the following sections and subsections:

Section 2: Background Theory and Definitions

\,

This chapter provides background theory and

constructs utilized in later chapters of the thesis.

major subsections:

definitions that are relevant to the

This chapter is broken up into six

2.1 Autonomous Intelligent Systems: This subsection examines intelligent system

developments and their characteristics.

2,2 Error Recovery in Automated Systems: This subsection examines previous error

recovery schemes used in automated systems. Included in this discussion are

operating system error recovery techniques and Petri Net error recovery schemes.

2.3 Fuzzy Logic: This subsection examines the use of Fuzzy Logic estimators to

provide a qualitative versus quantitative situation evaluation mechanism. In

particular, Fuzzy Rule Base Generation, and Fuzzy Cognitive Map Summation

Techniques are reviewed.

f

2.4 Generalized Stochastic Colored Petri Nets: This subsection provides

background material on Generalized Stochastic Colored Petri Nets and develops the

use of such petri nets as a means of graphically representing the execution sequence

of Discrete Event Dynamic System tasks, specifically error recoveries and on-line

plan generations.

2.5 Semantic Networks: This subsection provides background material on the

Semantic Network construct. In particular, previous work on both the limitation of

state-space explosion utilizing the Semantic Network construct and the utilization of

search techniques for searching a Semantic Network are examined. Finally the

hierarchical abstraction of conceptual units is examined with particular focus on the

linguistic weighting of inter-node links within a Semantic Network.

"N.

Section 3: The Planning Coorth'nator

This section introduces the Planning Coordinator and defines its Macro Architecture,

Internal and External Interfaces, and Functional Description in three major subsections:

6

3.1 Intelligent Machine Model: This subsection outlines the Intelligent Machine

Model and describes the flexibility which has made it the choice for the initial

application of the Planning Coordinator.

3.2 Planning Coordinator Macro Architecture." This subsection details the macro-

architecture of the Planning Coordinator and outlines its component structure, role,

physical location and logical location within the hierarchy of an intelligent x-

autonomous system.

3.3 Planning Coordinator Communication and Interface Description: This

subsection details the internal logical interfaces between components of the Planning

Coordinator as well as the logical interfaces necessary to integrate the Planning

Coordinator into existing intelligent x-autonomous systems.

3.4 Functional Description: This subsection presents the functional description of

the Planning Coordinator, detailing the operation of the Planning Coordinator.

3.5 Example Operation of the Planning Coordinator:. This subsection provides a

comprehensive example of the operation of the Planning Coordinator. The

environment in which the Planning Coordinator functions is limited to the Center for

Intelligent RoboticSystemsfor SpaceExplorationtestbedfor this exampleand will

beexplained.

Section 4: Research Goals and Proposed Work

This section describes the research goals and proposed work for the completion of this

Thesis. Included in this chapter are contributions to date as examined through the

examples of Section 3.5, and expected contributions.

References and Bibliography

Provides a listing of the literature cited as well as the literature reviewed during the

researching of this topic. It includes work to date by this student as well as previous

work by other researchers.

f-

2.0 Background Theory and Definitions

8

2.1 Autonomous Intelligent Systems

Autonomy, as defined in Webster's Ninth New Collegiate Dictionary, is the quality or condition

of functioning independently of other parts. Autonomy is not limited to a single biological or

mechanical entity.

Intelligence, as defined in Webster's Ninth New Collegiate Dictionary, is the ability to learn or

understand or deal with new or trying situations, or the ability to apply knowledge to one's

environment. Intelligence is not limited by definition to the human species or to biological

species. To date, however, the reality has been that biological entities are the only entities that

have exhibited intelligence to any degree. A significant amount of work has gone into research

specifically designed to create an intelligent non-biological entity.

A System, as defined in Webster's Ninth New Collegiate Dictionary, is a set of facts, principles,

rules, etc. classified or arranged in a regular or orderly form so as to show a logical plan

linking the various parts. A system is not limited to a mechanical or biological device capable

of motion, where motion is the movement of any part. Much work has been dedicated to the

creation of various systems that address various problems.

There is neither a Webster's New Ninth Collegiate Dictionary definition for an Autonomous

Intelligent System, nor a coherent literature definition that adequately incorporates the separate

This section introduces the background theory and definitions that are relevant to the constructs

utilized in later chapters of the thesis. The background theory introduces previous work in the

subject areas and examines the differences between the approaches being taken by other

researchers and the proposed approach.

9

_y

definitions of autonomy, intelligence and system. To provide a coherent definition for the

purposes of this thesis proposal, the following is offered:

Autonomous Intelligent System:

A collection of objects, facts, or principles arranged in an ordered

physical and/or logical form that:

1. Can function independently of other systems but can also be

configured to perform cooperative action with other systems.

2. Deals with new or trying situations and learns from its attempts

to apply its knowledge to its environment.

, May or may not possess the ability of locomotion (i.e. the

movement of any of its parts or the movement of its entire

structure) and may or may not be biological.

f:"

This definition permits the inclusion of intelligent autonomous robotic systems as well as

intelligent autonomous non-robotic systems under the umbrella of intelligent autonomous

systems. Note that an autonomous system can, if necessary, request assistance when needed.

This does not invalidate its autonomous nature. The consolidation of locomotive and non-

locomotive intelligent systems under the same umbrella is a necessary undertaking as the two

areas often posses specific techniques that are applicable to both, but are overlooked merely

because they are not part of the same general category.

There has been considerable work in the attempted identification and development of intelligent

autonomous systems. The following subsection introduces two such attempts and examines their

strengths and weaknesses.

2.1.1 Intelligent Machine Architectures

-£-

10

Research into the development of Intelligent Robotic and Machine Architectures (IRMA) has led

to the conclusion that hierarchically distributed system architectures more adequately represent

intelligence than do other models [Albus 75]. As discussed by Saridis [Saridis 79] and further

confirmed by Albus [Albus 83], intelligent robotic systems obey the principle of Increasing

Precision with Decreasing Intelligence (IPDI). This principle indicates that as intelligence

increases, the need for precise detail decreases in favor of conceptual combinations of more

abstract ideas. Similarly, as intelligence decreases, the need for more precise detail is needed as

opposed to conceptualizations. However, not all intelligent autonomous systems are necessarily

robotic systems as a robot is defined to be, a machine that can sense and react to input and

cause changes in its surroundings with some degree of intelligence and ideally without human

intervention. An intelligent autonomous system may be any system which conforms to the

definition of Section 2.1. Nevertheless, it still obeys the IPDI principle.

Albus [Albus 90a, Albus 90b] proposes a hierarchy for an intelligent system in which there are

seven basic elements: actuators, sensors, sensory processing, world modeling, task

decomposition, value judgment, and global memory�communications. This proposed hierarchy

is based extensively on Saridis' theory of intelligent controls [Saridis 85] and Brooks' layered

control system for a mobile robot, [Brooks 86]. Albus postulated that :

• Control bandwith decreases about an order of magnitude with

each higher level.

• Perceptual resolution of spatial and temporal patterns

contracts about an order of magnitude at each higher level.

• Goals expand in scope, and planning horizons expand in

space and time about an order of magnitude at each higher
level.

• Models of the world and memories of events expand in space

and time by about an order of magnitude at each higher level.

• At each level, tighdy coupled functional modules perform

task decomposition, world modeling, sensory processing, and

m"

value judgment, with feedback control loops closed at every
level.

11

The First three postulates are consistent with the development of the Intelligent Machine Model

by Saridis and coworkers [Saridis 77], [Saridis 83]. However, the last two postulates introduce

potential difficulties in the implementation of the Albus architecture. Albus proposes

maintaining world models and memories at each level of his hierarchy. While this would be

ideal, there is the very likely problem that world model coherence problems will arise, as the

update of seven world models, one at each of the seven levels of his architecture, is necessary.

In addition, limited memory availability in an intelligent autonomous system is a constraint that

cannot be ignored. Redundant storage of information is not acceptable under such conditions.

Albus also proposes that value judgments (undefined), sensory processing and task

decomposition be performed at each level, with closed feedback control loop execution. While

sensory processing is arguably necessary at each level, task decomposition and value judgment

are not. This is due to the IPDI principle. By the time a task is sent to a lower level, the task

has already been decomposed from the perspective of an overall task description. If the lower

levels execute the commands requested of them, this results in a time and execution space saving

(i.e., RAM necessary for holding the executing program).

The Intelligent Machine Model (IMM) developed by Saridis and coworkers divides the

functions of an intelligent machine into three major sections wholly based on the IPDI principle.

Divided into the Organization Level, the Coordination Level, and the Execution Level, Saridis

attempts to functionally consolidate the intelligent machine's operations. The three levels are

examined below,

Organization Level:

Performs planning and high level decision making from long term

memories. Requires large quantities of knowledge processing but

little or no precision.

12

Coordination Level:

Serves as an interface between the Organization Level and the

Execution Level. Involves coordination, decision making, and

learning on a short term memory.

Exectztion Level:

Executes the control functions passed to it from the Coordination

Level on the hardware comprising the Intelligent Machine.

The generality of the Intelligent Machine Model permits the introduction of a more consolidated

description of the different modules that comprise an Intelligent Machine. In addition, it

facilitates the inclusion of new modules into the overall Intelligent Machine architecture.

C

Neither the Albus model nor the IMM model provides for intelligent error recovery or on-line

planning directly. However, the ease with which a module that performs these tasks can be

included is of great importance. Hence choosing an intelligent system architecture into which

the Planning Coordinator is to be incorporated, becomes a choice of the architecture which most

easily facilitates the introduction and inclusion of new modules. For this reason the Intelligent

Machine Model has been chosen.

The following section introduces previous work in intelligent error recovery and outlines

identified strengths and weaknesses.

2.2 Intelligent Error Recovery in Automated Systems

Intelligent error recovery is akin to the generation of an alternate plan given that an unexpected

though potentially predictable event has occurred. If it were possible to enumerate all of the

potential errors, store a recovery plan for each error, and choose the optimal error recovery plan

efficiently each time an error occurs, intelligent error recovery would be simple. This, however,

is not the case. It is not feasible to employ a brute force method which systematically generates

and stores all of the exhaustively enumerated error recovery paths for a series of tasks. For even

13

a mildly complex task, the numberof possible errors and hence differing error recoveries is

inordinately large, requiring a tremendous amount of storage. Because of this lack of feasibility,

intelligent error recovery is a necessity. Presently, intelligent error recovery methodologies for

automated systems provide a wide range of potential solutions, each with its own limitation(s).

Presented below are several representations for error recovery that have gained notoriety. In

each case, the strengths and/or weaknesses of the methodology are examined.

2.2.1 AND�OR Graph Representation

°,.

°

Any autonomous system plan can be expanded to include all of the potential errors that could

result. This exhaustive enumeration can be represented as an AND/OR graph that in artificial

intelligence [Nilsson 80] has been used to structure the goals and subgoals, preconditions, of a

process plan. Regarding error recovery, AND/OR graphs have been used by de Mello and

Sanderson [de Mello 861, [de Mello 88], [Sanderson 87a], [Sanderson 87b1, and Cao and

Sanderson [Cao 911.

-- The algorithm capable of developing an AND/OR graph representation ensures that a solution

will be found if one does exist since all possible plans are enumerated. However, as the

complexity of an environment grows, and the complexity of a task grows, the AND/OR graph

also grows, exponentially. The exponential growth is in the number of possible nodes and

branches that must be explored to obtain a solution. As a result, the state-space that the AND/OR

-- graph represents suffers from state-space explosion. The searching of the AND/OR graph for a

potential solution will likewise increase as will the required storage space for the AND/OR tree

generated from the AND/OR graph. Hence when an error recovery plan is needed, the time to

search the given state-space for a solution may be inordinately large. In addition, if the

AND/OR graph is itself large and the storage space of the autonomous system in which the

AND/OR graph resides is too small to accommodate the entire graph, pruning may be necessary.

14

Unfortunately, as the AND/OR graph is pruned, it is possible that the potentially successful error

recovery plan will be pruned as well.

2.2.2 Failure Reason Analysis

Failure reason analysis as described by Srinivas [Srinivas 76], [Srinivas 78] attempts to find an

explanation(s) for a failure(s). As the explanation is determined, the reasons for the failure are

classified into four separate categories. Using knowledge of the preconditions of an activity and

its expected post conditions, Srinivas' system examines these categories: operation errors,

information errors, precondition errors, and constraint errors. It then implements a

backtracking scheme to recover from the failures. The backtracking produces a failure tree

which is analyzed to determine the explanation(s) for the cause(s) of the failure. Only after the

analysis of the failure tree is an error recovery strategy generated and attempted.

Like the AND/OR graph representation, there is the potential for combinatorial state space

explosion. This is because during the backtracking procedure, each precondition of the activity

in the failure tree must be expanded to find the probable cause of the failure. Unlike the

AND/OR graph representation, this methodology is limited to the generation of one error

recovery scheme at a time. Nevertheless, the time needed to generate the failure tree, perform

the analysis on the tree and generate the error recovery scheme is prohibitive. In addition, this

representation, like the AND/OR graph representation, does not provide for the inclusion of

new information into the operating environment. Rather, it relies on the existence of a static

environment.

Chang [Chang, 89a, Chang 89b] improved on Srinivas' approach by taking advantage of the

hierarchical structure of the plan activities in the generation of the failure tree. While this

15

proved to provide a substantial reduction in the effort required to search the failure tree, it did

not reduce the difficulty of state-space explosion.

2.2.3 Sensor Control Software Methodology

Lee and coworkers, developed a sensor based approach that would diagnose task errors through

the examination of a sensor signature. The sensor signature is defined as a collection of relevant

sensor values expected to occur at a given point during a robot task cycle [Lee 83a] [Lee 84]

[Lee 85]. This approach, while a potentially successful one, does not account for the potential of

misreadings, miscalibrations, or internal data corruption of the autonomous system. In addition,

it requires the mounting and identification of a significant number of additional sensors that

must be maintained. Finally it expects well-defined d priori knowledge of the sensors such as

location, orientation, and potential positions.

2.2.4 Rapid System Reconfigurability

Williams regards error recovery from the perspective of rapid system reconfigurability

[Williams 86]. Using a state table to represent sensor driven control, Williams utilizes a control

program to match existing states to those in the state table. This technique requires an operator

to teach the system how to react in a given situation. Once the system is taught, it can recover

from errors. There are two major difficulties with the Williams approach. First, in a real

workcell, the reconfiguration of sensors may not be possible. Second, complex sensory systems

such as vision systems have been shown by Lee [Lee 87] to be difficult to integrate into sensor

driven control.

16

2.2.5 Real Time Monitoring of Robot Control

As delineated by Gini and Smith [Gini 83], [Smith 86], [Gini 85a], [Gini 85b], and [Gini 85c], a

knowledge-based monitoring system that watches the preconditions and postconditions of each

robotic instruction can reduce the burden of rigorous off-line programming of robots designed

to provide robust error recovery. Unlike their contemporaries, Williams and coworkers, Gini

and Smith researched an approach that would have the ability to keep a robotic task history and

use the history to perform diagnosis and error recovery. The approach utilized three procedures:

a Preprocessor, an Augmented Program Processor, and a Recoverer.

(__!L

Were an error to occur, the Gini and Smith system uses the history and information available

about the task for diagnosis. Once the diagnosis is completed, the system appends additional

procedures to the existing augmented program to perform an error recovery to the next valid

state. Of the systems examined so far, this system is the only one that can interpret the error and

specify relationships among varying objects within the operational environment. The major

limitation of this model is that it will only use one strategy to recover from an error. That

strategy requires historical knowledge for diagnosis of the error and generation of the strategy.

This implies an unchanging environment or one in which historical knowledge is sufficient to

enact error recovery. For a completely identified, structured environment this approach may be

sufficient. For a dynamically changing one, it is not.

2.2.6 Plan Feasibility Model

Brooks [Brooks 82] has developed a plan feasibility model to determine the feasibility of some

intelligent plan. This feasibility model determines whether a plan is feasible or not, given

knowledge of the intelligent system and environment. The approach relics on a geometric

database to infer the effects of actions and the propagation of errors. This model is more of a

17

pre-processorof the plan rather than an error recovery mechanism. However with a

sophisticated sensing capability, the model may become useful for error recovery.

Unfortunately,thesophisticatedsensingcombinedwith theprogrammingto interpretthe sensory

datamay makethe modelprohibitively costly,due to the cost of sophisticatedsensingdevices

applicableto the task, and slow dueto the interpretationof the dataobtainedfrom the sensing

equipment.

2.2.7 Causal Reasoning Model

The Causal Reasoning Model is an error recovery strategy developed by Kumaradjaja and

DiCesare [Kumaradjaja 89]. This model is very similar to the AND/OR graph representation of

de Mello and Sanderson. Both models incorporate all possible paths from the initial state to the

desired state. The Causal Reasoning Model differs from the AND/OR graph representation in

that it incorporates the hierarchical structures of the activities and states. This structuring

permits some guidance as to the appropriate sequence of error recovery activities.

Additionally, like the AND/OR graph representation, new information is not easily handled by

the Causal Reasoning Model. Further, uncertainties that exist in the environment or in the

robotic model are unaccounted for. Finally, it is expected by the Causal Reasoning Model that a

structured, well-known environment exists since the Causal Reasoning Model relies on an

external entity to provide it with structured knowledge. Such an entity is not always available.

In addition, uncertainty is always present in an environment. It is here, specifically, that the

Causal Reasoning Model is insufficient.

w.._

18

(2.2.8 Operating System Techniques

By definition, an operating system provides the environment within which programs are

executed [Silberschatz 88]. As such there are several types of services that an operating system

will necessarily provide. Among those services are error detection and error correction.

•

Under error detection the Operating System must be aware of errors in :

Hardware

• CPU

• Memory - RAM and ROM

• Controllers - HDU, FDU, ODU, DMA, etc.

• I/O Devices - Printer, Tape Unit, etc.

Software

• Scheduling

• I/O Drivers

• User Programs

• Security Programs
° etc.

In general, error recovery by an operating system is a more complex task. There has been

considerable research done in the attempt to create a fully robust operating system capable of

detemaining and recovering from task level errors autonomously. To date, the only operating

systems that perform task level, autonomous error recovery are those that function to govern the

operation of a distributed processor system. The recovery methodology is similar to that

employed by Williams' Rapid System Reconfigurability technique. It is limited in scope to the

determination of a processor or link failure through a handshaking time-out procedure. Once

the identification of a failure has been verified, a rerouting is accomplished to bypass the failed

entity. The operating system does not make an attempt to fix the failed entity. This is suitable

for handling partially redundant tasks, where two devices (i.e., sensors) of similar functionality

19

7-
_°

each handle a portion of the load until one fails.

load.

On the failure, the other device takes the full

Single processor operating systems, at present, detect errors or errant situations. If the errors are

communication errors (i.e., can be fixed through error correcting codes) the operating system

will autonomously fix them. If the errors are due to user software (i.e., protection violation,

security violation, division by zero, etc.) the operating system catches them and fixes them

through the use of interrupt or trap service routines. These routines compare the violation

against those in a look up table, in a manner similar to that employed by Williams in his state

table look up.

i

Specific operating systems such as UNIX TM employ certain techniques. For example rather than

dealing with a 'pathological condition' through the use of elaborate control algorithms, UN/X TM

will perform a controlled crash of the system, called a panic [Ritchie and Thompson 74],

[Thompson 78]. As per Thompson [Thompson 92], "There is no real error recovery strategy in

UNIX TM Usually one has to design on a line between two extremes of speed and reliability.

Speed usually involved a lot of caching and asynchronous I/O. Reliability usually involved

synchronous guaranteed recoverable I10. We carefully thought about these problems and almost

always came down on the side of speed. For our uses faster access with occasional crashes

was the usual choice..."

7

With respect to file identification and directory identification (devices are considered special

files), UNIX TM uses file structures and inode structures. A file descriptor is used by the UNIX

a-Mkernel as an index into a file structure. The fide structure points to an inode structure. This

inode structure is allocated out of a fixed-length table. This table is an 'in-core' copy of the

master table which is located on disk. Discrepancies in this table are handled through

comparison to the master copy on disk. Discrepancies between the inode structure table and the

20

[;
file structure table are determined through the comparison of fields that contain reference counts

of the number of file structures / inode structures pointed to/from.

2.2.9 Summary

Each of the intelligent error recovery methodologies presented in this section have been shown

to be applicable under limiting conditions whether those conditions be due to space limitations,

time limitations, search inefficiencies, or environmental expectations. In contrast to the

techniques presented so far, the goal of the Planning Coordinator is to demonstrate the ability to

employ strengths equivalent to the aggregate of the strengths of the techniques presented so far,

without a corresponding aggregate of their weaknesses. The Planning Coordinator is discussed in

Section 3.

2.3 Fuzzy Logic

Fuzzy logic was created by Lotfi A. Zadeh in the mid-1960's in response to a need for bridging

the gap between the way human beings reason and the way computers are programmed. Expert

Systems were introduced in the early 1960's as a means of assisting human operators by

performing the function of an 'expert' in a given field. The following subsections introduce

Fuzzy Logic terms and theory for later use in this thesis proposal.

2.3.1 Fuzzy Logic Definitions

Concepts defined by Zadeh, [Zadeh 84];

A kind of logic using graded or qualified statements rather than

ones that are strictly true or false. The results of fuzzy reasoning

are not as definite as those derived by strict conventional logic, but

they cover a larger field of discourse.

21

Fuzzy Set

A set in which the transition from membership to non-membership

may be gradual rather than sharp. The degree of membership is

specified by a number between one (full membership) and zero

(non-membership).

Fuzzy Modifier

Operation that changes the membership function of a fuzzy set by

spreading out the transition between full membership and non-

membership, by sharpening the transition or by moving the

position of the transition region.

.Linguistic Variable

Ordinary-language terms that are used to represent a particular

fuzzy set in a given problem; such terms would include: large,

small, medium, etc.

Ultrafuzzy Set:

A set whose membership function is itself a fuzzy set, so that an

object in the set is assigned a range of grades rather than being

given a membership grade between zero and one. For example a

membership grade of 0.55 might become 0.4-0.6.

A more formal definition of a fuzzy set and the operations applicable to a fuzzy set are given

below. This formalization is taken from [Zadeh 84a]. Let Y_,be a space of points (objects), with

a generic element of E denoted by _, thus E = {_ }.

Fuzzy Set

A fuzzy set, _, is characterized by a membership or characteristic

function f_,(_) which associates with each point _ in E a real

number in the interval {0, 1}. The nearer the value off_,(_) to

one, the higher the membership grade of _ in E.

Empty Fuzzy Set

A fuzzy set is empty if and only if its membership function is

identically zero on E.

22

Equality

Two fuzzy sets (_ and 0 are equal, written

f¢(_) = fo(_)for all _ in ,E.

= O, if and only if

Complement:

The complement of a fuzzy set, _, is denoted by _' and is defined

as: f¢, = 1 - f¢.

Containmem::

The fuzzy set • is contained in the

if fo(_) < fo(_).

Equivalently, • c (9 ¢:_fo(_) <fo(_).

fuzzy set O if and only

It must be noted that although the membership function of a fuzzy

set has some resemblance to a probability function when E is a

countable set, or a probability density function when E is a

continuum, a fuzzy set is completely non-statistical in nature. This

point is clarified in the following discussion of the combining rules

of fuzzy sets.

Union

The union of two fuzzy sets, ¢ and O, with respective

membership functions f¢(_, andre(_, is a fuzzy set X, written

as X = ¢ t..) @ whose membership function is related to those of

and (9 by the relation: fx(_) = Max[fo(_), O(_)], _ e _. Note that

associativity holds here.

Intersection

The intersection of two fuzzy sets, ¢ and O, with respective

membership functionsf¢(_), andfo(_), is a fuzzy set X, written

as X = ¢ c_ (9 whose membership function is related to those of

and (9 by the relation: fx() = e E.

Note: Henceforwardfo(_) will be denotedfo,

23

Algebraic Product

The algebraic product of • and O is denoted by _O and defined

by the relation: f_o = f¢/'O, where _® c • c3 lB.

Algebraic Sum

The algebraic sum of • and ® is denoted • + lB, and is defined by

the relation f.+o = f.+ fo, wheref.+ fo < 1 for all _ _ E.

Al_01ut¢ Difference

The absolute difference of • and El is denoted I • - O I and is

defined by the relation f}_-OI = If.-fo I.

,..b

(.

Convex Combination

The convex combination of three arbitrary fuzzy sets, ¢,, ® and FI

is denoted by (_b, lB ; rI) and is defined by the relation (,:b, ® ; I-I)

= YI_ + FI' ®, where I-I' is the complement of FI. Equivalently

f(_, o;rr) = fnfcv + [1- frill, for all _ ¢ E.

Fuzzy R_latign

An n-ary fuzzy relation is a fuzzy set in the product space of

F. x E x E x .-- x ... x E x E. For such relations, the membership is

of the form fo(_l, _2 _n) where _i E F., i = 1 n.

The following subsection outlines some of

utilizing Fuzzy Logic for error recovery.

the theory of Fuzzy Logic and previous work

2.3.2 Previous Work Using Fuzzy Logic for Error Recovery

Fuzzy Logic attempts to replace familiar bi-valent logic [and probability theory] with a

continuum. A fuzzy set is a class with fuzzy boundaries. Such a class, as the definition in the

previous section indicates, is characterized by associating a grade of membership in the class

with every object that could be in the class. Human beings perform this assignment

24

subconsciouslyand without a full understandingas to the mechanisms whereby the assigned

grades of membership are generated. The majority of computers and computer programs, to

date, do not take advantage of the inherently fuzzy nature of the environment in which they

operate. As a result, a computer has difficulty in recognizing the equivalence of two different

individuals' handwriting, whereas a human being would not.

Previous work in Fuzzy Logic specifically in the area of error recovery and/or on-line planning

is not extensive. Fuzzy Logic has been used extensively in the creation of controllers that more

closely mimic a human operator. The first such application was a development by F.L. Smidth

& Co. of Copenhagen for the control of cement kilns. Their results indicate that the use of the

fuzzy controller provides a cost and fuel savings as well as a more stable product.

A second application of Fuzzy Logic to controls was implemented by Shoji Miyamoto and Seji

Yasunoby of the Systems Development Laboratory of Hitachi, Ltd. in 1984 for the automatic

operation of a train by means of a predictive fuzzy logic controller. Unlike other fuzzy logic

controllers, a predictive fuzzy logic controller predicts the results of the execution of the actions

given in the rules that govern the operation of the fuzzy logic controller. Since then, Japanese

industry has applied fuzzy logic to a variety of product developments but still has not applied

fuzzy logic to the areas of error recovery and/or on-line planning. The reason for this is that

with the fuzzy logic applications attempted, error recovery per se has not been needed.

In limited applications, scientists and engineers at the Institute of Industrial Cybernetics and

Robotics in Sofia, Bulgaria have applied fuzzy logic to robot vision. Using a fuzzy classifier to

determine the degree of 'edginess' of the fuzzy edge of the seam that the welder is forced to

follow, it is found that the center of the seam is determined more readily. This seam center is

determined to be quite accurate, and often different from the center that would have been

25

determinedby taking theedgeof thegrayscalethreshold. Their project showsthat the robotic

arc welding systemis moreeffective andpermitsmorecoherentwelding.

Regardingerror recoveryand/oron-line planning, thereis no literature that examinesa direct

attemptto incorporatefuzzy logic. Thework thatmostcloselyresemblesthe useof fuzzy logic

for thedevelopmentof errorrecoveryschemesis thatby CaoandSanderson[Cao 91] and[Cao

92]. Utilizing theFuzzyPetriNet introducedin [Looney88] and[Chen90], CaoandSanderson

createaFuzzy PetriNet from anAND/ORgraph.

,,, L

The Fuzzy Petri Net generated from the AND/OR graph, as claimed by Cao [Cao 91] does not

exhibit the same state space explosion that an Ordinary Petri Net generated from an AND/OR

graph could. This is due to numerical constraints and ordering precedence relationships.

However, the procedure for generating the Fuzzy Petri Net requires the generation of an

Ordinary Petri Net first to examine the liveness, safeness and boundedness of the overall plan

representation. Hence even before the Fuzzy Petri Net is created, pruning of the AND/OR

graph may eliminate viable error recovery options. Secondly, it is stated in [Cao 92] that if the

Petri Net is designed correctly, an altered firing sequence will eventually lead to a goal state by

correctly executing an error recovery path. There is no accounting for an incorrectly designed

Petri Net. Further there is no provision for the potential of cascading errors and the mechanisms

whereby a cascading error would be handled. This is of concern in an autonomous system

where a cascading error could be catastrophic to the overall operation of the intelligent

autonomous system. Finally, [Cao 92] the fuzzy markings of the Fuzzy Petri Net represent the

degree of completion of the process to which the fuzzy marking pertains. What happens to the

fuzzy marking during an error recovery is not expanded upon.

26

2.3.3 Summary

The use of Fuzzy Logic has been developed to provide a more qualitative approach to affecting

the operation and control of a system. In general, Fuzzy Logic has been used as a viable

alternative to standard control system methods as evidenced by its use in the development of

products in industry. As yet, there is little use of Fuzzy Logic for the development of robust

error recovery and on-line planning schemes. The work that has been done exhibits problems

not necessarily related to the use of Fuzzy Logic but which affect the overall system. No work

has been uncovered that uses Fuzzy Logic in a manner similar to the work being proposed for

this Thesis. The following section examines Generalized Stochastic Colored Petri Nets, their

background and previous work using Petri Nets for error recovery.

C
2.4 Generalized Stochastic Colored Petri Nets

A Petri Net may be thought of as a graph theoretic abstract modeling concept used to efficiently

model the states, preconditions, and functions of a discrete event or a continuous event dynamic

system, particularly when concurrence and conflict are involved. Petri Net (PN) theory utilizes

a highly graphical representation to exhibit a strong mathematically founded system design and

analysis methodology. The strong mathematical foundation of PNs has permitted the

establishing of reliable performance and analysis tools. These tools, combined with the event

driven nature of the Petri Net construct, permit the use of Petri Nets as an effective means of

modeling any discrete event dynamic system, or any continuous dynamic system in which the

continuous system can be modeled as a continuum of discrete events. Overviews of the basic

Petri Net Construct are provided in [Murata 84], [Murata 89] and [Peterson 81]. The following

sections introduce the basic def'mitions and terms used in Petri Net theory and expands the terms

to include stochastic and colored Petri Net extensions.

27

2.4.1 Petri Net Definitions

2.4.1.1 Ordinary Petri Net (OPN)

An Ordinary Petri Net, A, is a quadruple: A= (P, T, F, M0), where

• P = {P1, P2, P3, --. Pp} an enumerable set of places.

T = {T1,T2,T3, ... Tt} an enumerable set of transitions.

• F_ I u O, the flow relation where,

I: P x T---_{0,1 } describes the directed connectivity from places to transitions.

O: T x P---_{0,1} describes the directed connectivity from transitions to

places.

M0: describes the initial marking, distribution of tokens, within the Petri Net.

PnT=_ and PuT#_3

2.4.1.2 Arc Multiplicity

An OPN permits simple connectivity between places and transitions. An extension to the OPN

permits non-simple arc weighting. When non-simple, arc weights are permitted the resulting

models are called Generalized Petri Nets (GPN) or more simply Petri Nets. The definition of the

OPN is generalized to include the non-simple arc weighting as below:

From:

I u O, the flow relation where,

I: P x T-->{0,1 } describes the directed connectivity from places to transitions.

If I(P, T) = I¢, and lc ;_ 0 then the arc weight from input place P to

transition T is of weight r_

O: T x P---){0,1} describes the directed connectivity from

places.

transitions to

C

If O(T, P) = 1<, and)c _ 0 then the arc weight from transition T to

output place P is of weight x:

2.4.1.3 Place and Transition Ordering

28

The definition of the OPN as given implicitly describes an ordering of places and transitions

since each place and transition is considered to be an independent entity. It is natural to order the

places and transitions numerically. This convention will be followed throughout the remainder

of this proposal.

Ordered numerically, a sequence of places or transitions can be considered more succinctly in

vector notation with 1_0 replacing M 0 in the definition. This representation introduces the use of

matrix notation to more easily represent the Petri Net.

2.4.1.4 Incidence Matrix

Using the deirmition of a GPN a matrix notation can be defined that more readily exhibits the

connectivity described in the flow relation. This matrix description is given below.

Incidence Matrix

Given a GPN with a finite number of places, p, and a f'mite number of transitions,

t, the p x t incidence matrix C is formed as follows:

t_- is the matrix of input arc weights, where Ci, j" is the number of input arcs

from place Pi to transition Tj: C_.i,j" = I(P i, Tj).

is the matrix of output arc weights, where C.i, j+ is the number of output

arcs from transition Tj to place Pi: Ci, j+= O(Tj, Pi)-

C is the incidence matrix given by C = _ - C-

(_.

29

2.4.1.5 Firing Rules and Firing Sequences

The flow of tokens through a GPN is regulated by the f'wing rules associated with the transitions.

Given a GPN with some current marking ld,, a transition Tj is said to be enabled if i.ti >_ I(P i, Tj),

V i = 1....... p.

Transition En.abled Set

The transition enabled set of a GPN having some marking 1_,is

ES(A, ld,) = {t _ T I P-i > I(Pi, T); V i = 1,2 p}

From the current marking any transition in the enabled set may fire, whereby tokens are first

removed from the transition's input place(s) and then are deposited in the transition's output

place(s). Firing the transition Tj results in the new marking lai' given by.

I.ti' = I.ti - I(Pi,Tj) + O(Tj,Pi); i=1,2 p

Firing a single transition is generalized to f'n'ing multiple transitions in sequence as follows. Let

o represent an ordered sequence of transition f_ings. Let (fiT . represent the number of

occurrences of the transition T in o. The f'wing count vector, denoting the sequence of firing is

obtained as follows.

O = [OIT1 (fiT 2(fiT t]T

Therefore from the current marking, IJ,, firing the transitions sequence represented by o results in

the new marking 1£ as below:

' =l+C-o

30

2.4.1.6 Reachability Graph

The states of a GPN are associated with the results of applying the firing rules and firing

sequences previously described to the initial marking of the GPN. From any GPN a graph

called the reachability graph can be generated. This graph is composed of a set of states and a

set of directed links that indicate legitimate state changes through specific transition f'Lrings. As

the name implies, a reachability graph for a particular state, indicates the subsequent states that

can be reached given a particular transition firing sequence. The reachable states compose a set

known as the teachability set.

C

It is possible that for some GPNs, the reachability graph will be unbounded (i.e., the carctinality

of the reachability set is infinite). Since the problem of generating error recovery or on-line

plans assumes an enumerable number of states, it is assumed that the reachability set is f'mite. If

necessary, tests for the boundedness of a GPN can be performed. Formally these tests are as

given below.

• The bounded reachability set for a GPN, A, is given as.

RS (A,_tO)cN'o+P

• RS(A,Id,L y) ¢:* 3or _ Z(A,Id,0) _.ld,_= ld,0 +C.

• IRS(A,gI, O)I < **

Note that structural boundedness means that a GPN is bounded for any

finite initial marking.

31

2.4.1.7 Generalized Stochastic Petri Nets

Generalized Stochastic Petri Nets (GSPN) are a time domain extension of GPNs. Each

transition of a GSPN is associated with an exponential density function that describes the

probability of the time required to fire the transition. This is accomplished by augmenting the

definition of a GPN with a parameter describing the exponential distribution for each transition.

Hence a GSPN, A, is a quintuplet where A= (P, T, F, F,M0), and 1": T-+R+ u .o

The exponential family of density functions has infinite support. Hence the reachability graph

for a GSPN is formed by considering not the GSPN but the underlying GPN. The reachability

set contains all of the states that are possible, and also contains the directed links that now

indicate the infinitesimal rate of execution of the transitions. Within a GSPN, two major types of

transitions are possible, Immediate Transitions and Exponential Transitions.

Immediate transitions, when enabled, will be fared before any other enabled transition type. The

immediate transition is signified by an exponential density parameter having value oo. This is in

keeping with the mathematical interpretation of the density function. States in the reachability

graph of a GSPN still represent all of the states that can be legally reached. If a state is exited

due to the f'wing of an immediate transition, and hence is occupied for zero time, the state is

called a vanistu'ng state. States which are exited due to the f'wing of an exponential transition are

occupied for some random amount of time and are called tangible states. The two differing

types of transitions, Immediate and Exponential do not in any way affect the structural analysis

of the GSPN. As pointed out by Watson, [Watson 89], [Watson 91a], [Watson 91b], [Watson

92a] and [Watson 92b] the distinction between vanishing and tangible states does permit a

reduction in the size and complexity of the performance analysis problem.

32

C •

2.4.1.8 Generalized Stochastic Colored Petri Nets

A Generalized Stochastic Colored Petri Net (GSCPN) is an extension to the GSPN and is

represented as a sextuplet, where the augmentation is in the introduction of colored tokens to the

GSPN construct. Hence a GSCPN, A= (P, T, F, F, C, M0), where F: T--_R+ u **. The colors,

C, are used to differentiate between different levels and/or functions of operation occurring

within the same GSCPN. Hence through the graphical modeling of a system, multiple levels of

operation and/or differing attributes can be viewed simultaneously. During an error recovery, it

is possible that more than one level of error-recovery is necessary. Through chromatic

identification, differing levels of the error recovery can be distinguished from one another.

2.4.1.9 Inhibitor Arcs

Another extension to the GPN is the use of the intu'bitor arc. The inhibitor arc represents a

simplification tool for the graphical representation of GPNs. An inhibitor arc placed from a

place Pi to a transition Tj will cause the transition to be disabled if the place contains a token.

As with normal arcs, a weight can be associated with an inhibitor arc. Hence if a weight, r,, is

associated with an arc, then the transition connected to the arc cannot be disabled unless the

place connected to the arc contains at least 1¢tokens.

The inhibitor are extension to the GPN does not increase the modeling power of the GPN. In

fact, it prohibits analysis of the GPN based on the GPN's incidence matrix. The inhibitor art's

functionality is easily represented through the use of basic places, transitions and arcs of _e

GPN. It is a convenience to simplify the graphical representation of the GPN. When considered

with an error recovery or on-line plan scheme, the use of inhibitor arcs simplifies the

representation of the preconditions needed to execute a plan.

33

2.4.1.10 Liveness

Liveness in a GPN is qualified by level since a GPN can be hierarchically organized, and is

determined by the liveness of the GPN's transitions. Given a Petri Net, A, a transition T i _ T is

said to be Live under the following criteria:

• Level 0 (dead): Z_e RS(A,Id, 0) _ Ti • ES(A,z).

• Level 1 (live): 3Z.e RS(A,Id, 0) _ Tie ES(A,7.).

• Level 2 (live): given !¢ e N+, 3a e Z(A,R 0) _ O'tTi >__r,.

• Level 3 (live): 3(_ _ Z(A,IJ, 0) _ V_ N+,O'ITi > lc..

• Level 4 (live): Z__ RS(A,IJ, 0) _ 3_ _ RS(AdJ, 0)) T i _ ES(A,2_).

A petri net is said to be live at a level if all of its transitions are live at that level or at a higher

level.

2.4.1.11 P and T Invariants

Two types of invariants are defined for GPNs and their extensions. A P-invariant of a GPN is a

set of places that maintains a constant sum of weighted tokens, throughout the evolution of the

net. A T-invariant of a GPN is similarly, a set of transitions that, when fired has the aggregate

result of leaving the markings unchanged.

2.42 Previous Work and Theory on Petri Net Error Recovery

Considerable work has been performed utilizing Petri Nets as the mechanism whereby error

recovery of task level errors could be accomplished in an automated manner. There are

commonalities among the methods used to accomplish these error recoveries. These will be

brought out in the subsections below.

34

2.422.1 Verification of Error Recovery Specification through Colored Petri Nets

Specification of the necessary error recovery parameters can be accomplished at two major

intervals in the operation of an intelligent machine. The f'LrSt interval is prior to the actual call

for an error recovery. Establishing a most likely errored event prior to the actual call for an

error recovery is a means of identifying a need. Akatsu and coworkers [Akatsu 91] go further in

the attempt to identify errored events. They attempt, through the use of Colored Pewi Nets, to

predetermine a significant number of possible error events and verify the actual event against

those stored. If no match is obtained, a call to an external agent is made.

This approach, while plausible for an extremely limited size system does pose problems. First,

there is no determination as to what constitutes a significant number of possible error events.

As the distributed system about which they speak is increased in number of distributed processes

and complexity of distributed processes, the significant number of error recoveries possible must

also increase. Utilizing Petri Nets, even colored ones will tend toward a state space explosion of

places, arcs and transitions, limiting the actual number of recovery nets that can be stored.

Further, it is possible that an error will occur that does not have an error recovery representation.

Akatsu does not allow for this possibility, limiting the functionality of his system in an unknown

or unstructured environment.

The second interval in which specification of error recovery parameters can be obtained is

during an actual error recovery. Akatsu accounts for this type of error recovery specification by

limiting his scope of systems to redundant memory or data-plurality systems in which the same

data are held in plural or redundant memories. While this approach does provide for the

potential of data consistency, a major goal of the Akatsu approach, it does not allow for the

majority of systems, which do not have plural memories. In a non-redundant memory system,

the Akatsu approach is limited since it is necessary to partition the memory into multiple

35

independentsub-memories.While this is a possibility, an errant memory manager or memory

controller would render the entire memory useless.

2.4.2.2 Adaptive Design of Petri Net Controllers for Automatic Error Recovery

Considerable work has been done by Desrochers, DiCesare, Fielding, Goldbogen, H6rmann and

Zhou in the use of Petri Net controllers to provide automatic error recovery. This work is

reviewed below.

v

The basic premise that has been used by the researchers in [Zhou 89], [Fielding 87], [Fielding

88], and [H6rmann 89] is two-fold. First, it is expected by the researchers that the environment

in which their system is operating is well known and highly structured. Second, it is expected

that given a new error, one that was not anticipated, 'the mechanism of fault diagnosis and error

recovery planning will be started by using machine intelligence techniques or operator

intervention This results in a new Petri Net controller..' [Zhou 89].

Given that the basic premise is sound, which in many cases it may be, the techniques used by the

researchers are adequate. The techniques would fall short, however, given a potentially

changing or unstructured environment in which new errors would be introduced. These

techniques, as taken from [Zhou 89] and [I-I6rmann 89], are outlined below:

Input Conditioning Method [Zhou 89]

The idea of the input conditioning method is that an abnormal state in a place that

represents a process or a state of a manufacturing system can become a normal

state after other actions are finished or some conditions are satisfied.

Alternate Plan Method [Zhou 89]

36

The philosophyof the alternateplan method(alsocalled error avoidance)states
that thereexistsanotherPetri netcontroller thatcan transformanabnormalstate

in placep directly into a normal state in the same Petri Net.

Backward Error Recovery_ Method [Zhou 89]

Backward error recovery suggests that under the assumption that the state is

normal (e(p)=l), a Petri Net controller, S, is executed and a new faulty state in

place w results. But this state can become a normal state in place p after the

operation of a Petri net controller S'.

Forward Error Recovery Method [Zhou 89]

The forward error recovery method is similar to the backward error recovery

method. Suppose that a faulty state results after the operation of a Petri Net

controller, S. However, this state can be directly transformed into a normal state

in after a Petri net controller S' operates.

As stated by Zhou, the methods he presents would be particularly effective ff 'an easy way to

modify the control code when a new error is encountered and the procedures to handle it are

determined,' were available. It is here that the methods outlined by Zhou and coworkers fall

short. There is no guarantee that control code modifiers will be available. Hence Zhou's

methods are relegated to systems that are completely defined and limited in the complexity of

the potential problems that could be handled. In addition, Zhou's work deals only with Ordinary

Petri Nets. He does not consider the use of Generalized Stochastic Petri Nets or Generalized

Stochastic Colored Petri Nets that introduce exponentially timed transitions.

HtSrmann utilizes a failure monitor to establish fault diagnosis but does not expand on the

intercormection between the failure monitor and the error recovery schemes that would be

generated. Although he does utilize condition / event Petri nets for sequencing tasks as well as a

world model for storing information about the current activities he shows no connection between

37

w , the world model and the generation of other than preestablished activities. As with Zhou, he

expects the environment to be highly structured.

2.42.3 Summary

U_izing a purely Petri Net approach in the attempt to create a robust error recovery scheme has

been shown to work only in extremely limited systems. Those systems exist in highly structured

well known, non-changing environments. The introduction of a changing environment adds the

potential for new information which must be transformed into useful Petri Net places,

transitions and arcs. The techniques reviewed do not provide for the capability to accomplish

this. In addition, the modeling of a changing environment with a Petri Net does not account for

the potential of state-space explosion, a very real problem.

2.5 Semantic Networks

C-

This section describes the Semantic Network (SNet) structure introduced by Quillian [Quillian

68] and previous work using Semantic Networks, applicable to this Thesis Proposal. This is the

first time that SNets have been proposed for error recovery or on-line planning.

2.5.1 Semantic Network Structure

As defined in [Quillian 68], [Nilsson 80], [MacRandal 88], and [Shastri 88], a Semantic

Network is an abstract conceptual structure representing knowledge in terms of concepts, their

properties, and the hierarchical sub/superclass relationship(s) that exists between concepts. It

presents the knowledge as nodes, representing conceptual units, and directed links representing

the relationships between units, in a net-like graph. The essential idea behind SNets is that this

38

graphtheoreticstructureof relations and abstractions can be used not only for inference, but also

for understanding.

Unlike specialized networks and other graph theoretic structures such as Petri Nets, SNets aim to

represent any kind of knowledge that can be described in natural language. In addition, the

Semantic Network provides methods for automatically deriving larger bodies of implied

knowledge without destroying the underlying body of knowledge explicitly stored in the

Semantic Network structure. This approach remains valid even for complex structures, since

any non-atomic structure can be shown to have some composite structure that can be

decomposed for storage, provided that its characteristic relations are maintained.

Semantic Networks possess multiple layers of abstraction that permit the Semantic Network to

maintain multiple classes and superclasses for state description. This capability is of importance

in the modeling of hierarchical structures in which purely mathematical modeling is ineffective.

Activities, such as linguistic analysis, which fall into this category include those in which

conceptual analysis is required as opposed to the repeated processing of modeled elements. A

Semantic Network provides a map of the semantic meaning of a natural language sentence, in an

ordered, arranged, structured knowledge base. This permits syntactically different sentences to

be immediately related by their semantic meanings. Some previous work with Semantic

Networks is applicable to this Thesis Proposal. The following subsection examines some of this

work.

2.5.2 Previous Work Using Semantic Networks

L

A Semantic Network has been shown to be a viable construct for the development of databases,

both in terms of speed of access, and minimization of space. Richens [Richens 56a] ['Richens

56b] uses a core of semantic primitives created on a Semantic Network for language translation.

_ 39

o

_P

His creation, Nude, utilizes this core of semantic primitives to build other related concepts. His

work was furthered by Masterman [Masterman 62] in her T-Lattice construct, used for the

generation of a thesaurus for organizing language concepts hierarchically. These two pieces of

work are important as they establish the successful use of primitive cores of concepts from

which more complex concepts can be built.

This importance of the concept core is not the only important development in the use of

Semantic Networks. It was realized by Brachman [Brachman 85] that in addition to the general

concepts that form the Semantic Network nodes, specific information is necessary to ensure the

distinction of objects that fall within the same conceptual classes. His work resulted in the

establishment of five link/node levels representing a Semantic Network description. These levels

are depicted in Figure 1, from highest level to lowest level. Brachman showed that a description

using a Semantic Network could exist on all of the levels simultaneously, with objects and

relations at one level being realized using the structures of a lower level.

The difficulty is in representing structures in a computer environment. This difficulty was

initially eliminated through the use of the frame construct. However, Fillmore [Fillmore 86] and

Simmons [Simmons 73] showed that the frame construct is insufficient. They postulated that

the semantic case represented the real world role played by an actor, in an event. Hence they

applied restrictions to Minsky's frames and created the case_frame structure. This new frame

type is characterized by an event, its cases and the type restrictions placed on related objects.

40

..- .. Level

Linguistic

Conceptual

Epistemological

Component

Arbitrary Concepts

Words, Expressions

Semantic or Conceptual

Relations (cases)

Primitive objects

Concept Types

Inheritance, etc.

Structure

Sentence Descriptions

Concept Dependencies

Deep Case
semantic networks

Associative

Relational

Logical Propositions Boolean Logic
Predicates Nodes

Logical Operators

Implementation Atoms Data Structures
Pointers Frames

Figure 1

Brachman's Analysis

The applicability of the case_frame construct to this Thesis Proposal is high due to the fact that

actions are limited by the environment in which the actions take place. Even were the

environment to be unstructured, the relationships between objects within the environment still

maintain a structure.

Important to the development of this Thesis Proposal is the ability to search a Semantic Network

for paths between object nodes, effectively determining the connectivity between the nodes.

Work performed by Hendler, Quillian, Norvig, Yu and Riesbeck, [Hendler 92] [QuiUian 69]

[Norvig 89] [Yu 90] [Riesbeck 86], has shown that symbolic marker passing is a viable means

of deriving a path between two Semantic Network nodes. Symbolic marker passing is a

technique which initially identifies two nodes as nodes of interest (origins), and then proceeds to

identify (mark) all neighboring nodes until a node is marked from the two differing origins. The

-- 41

7" potential for the state-space explosion of marked nodes and false path identification

eliminated through restrictions on type, and limitations on acceptable link traversals.

is

2.5.3 Summary

Although there is no work that has been done using Semantic Networks for error recovery and

on-line planning, there has been extensive work done using Semantic Networks for other

purposes. This Thesis Proposal proposes the use of Semantic Networks in the establishment of

the Primitive Structure Database of the Planning Coordinator, an essential part of the Planning

Coordinator's error recovery and on-line planning scheme. The Planning Coordinator is the

subject of the next section.

42

I
r ---

3.0 The Planning Coordinator

(

t

The Planning Coordinator is a stand alone error recovery architecture designed to be used with

an intelligent x-autonomous system architecture. Because it is expected to be a stand alone

architecture, the Planning Coordinator's relationship to any existing x-autonomous architecture

is as a logical extension, functionally subservient to the main controller of the x-autonomous

system. This is not to imply that the Planning Coordinator cannot function on its own. Having

reviewed several distinct system architectures, as outlined in Section 2, those that correspond to

the principle of Increasing Precision With Decreasing Intelligence have shown themselves to be

most promising to the attachment of the Planning Coordinator as an error recovery unit. In

particular, the Intelligent Machine Model (IMM) developed by Saridis and coworkers has

demonstrated the most flexibility. Due to its flexibility, the Intelligent Machine Model has been

chosen as the intelligent architecture which the Planning Coordinator will use for identification

and demonstration of its capabilities.

The following subsection briefly examines the Intelligent Machine Model and those factors that

have made it the choice for the initial application of the Planning Coordinator. Following this

subsection will be an examination of the Planning Coordinator's Macro Structure, Interface

Description, and Functional Description.

3.1 Intelligent Machine Model

The Intelligent Machine Model, in its present form, is based upon the theory of hierarchically

intelligent controls introduced by Saridis and Stephanou [Saridis 77] and furthered by Saridis

through the analytic design of Intelligent Machines [Saridis 83]. The theory of hierarchically

intelligent controls proposes the stratification of the Intelligent Machine into three levels based

upon the theory of Increasing Precision with Decreasing Intelligence.

43

"r-

The three levels depicted in Figure 2, the Organization Level, the Coordination Level, and the

Execution Level, function conceptually to provide high level decision making and long term

planning, decision making and short term learning, and control function execution, respectively.

I
n I
O n
r ,',
• r

r

. n
g g

I
. P,
! •

T

n n

¢

• Z_ Execution Level

Figure 2

THE INTELLIGENT MACHINE MODEL

As expanded in Figure 3, the Organization Level, consists of an Organizer and a Global World

Model. The Organizer, functions solely to interpret the Global World Model and thus develop

off-line, long term strategic plans. These off-line, long term plans function collectively to

provide the Intelligent Machine with long term goals. Individually, these off-line, long term

plans function to provide the Intelligent Machine with medium term goals that serve to achieve

milestones along the long term path. The Global World Model is a quasi-static representation of

both the present environment in which the Intelligent Machine must function, and the past

environments in which the Intelligent Machine has functioned. For the purposes of this Thesis

Proposal, it is necessarily assumed that the Organization Level in its entirety is completely

functional.

t

\

44

I Organizer 1

.2.1.,2:i-i,.:i._,i:i.2:World.::2:.::2,?-:-:-:.,.

• .:: :)i,2sY ,:....

Figure 3
The Organization Level

As expanded in Figure 4, the Execution Level functions to take the detailed commands sent to it

from the various Coordinators of the Coordination Level and execute them on the physical

hardware that is part of the Intelligent Machine. Note that this hardware is not limited to robotic

elements but can be any tangible piece of equipment that can perform some physical or mental

function. As regards this Thesis Proposal, it is assumed that the Execution Level and the

hardware it must interface with are completely functional.

r l
From Coordination Level I

I

Figure 4
The Execution Level

Of interest to this Thesis Proposal is the Coordination Level, the logical point of interface for the

Planning Coordinator. As originally designed by Saridis [Saridis 88], the Coordination Level

consisted of a Dispatcher that interprets the plans sent from the Organization Level, and

45

Coordinators that function to interpret subplans sent from the Dispatcher and convert them into

control commands understandable by the physical hardware whose actions the Coordinators

coordinate. Depicted in Figure 5 is a modified Coordination Level. The modified Coordination

Level is very similar to that of the original Coordination Level. The major difference between

the two is in the inclusion of Coordinators that do not directly connect to the physical hardware

of the Execution Level. Among these Coordinators are those that are physically part of the

Intelligent Machine, such as the Learning Coordinator, and those that are logical extensions to

the Intelligent Machine, such as the Planning Coordinator.

Figure 5
The Coordination Level

The complete architecture is depicted in Figure 6 on the following page. From the figure, it can

be seen that the Planning Coordinator attempts to take advantage of existing modules and

existing communication pathways. By doing so, the Planning Coordinator architecture becomes

a more versatile architecture.

46

l

I""

Figure 6
The Levels of the Intelligent Machine Including the Planning Coordinator

Except where needed for clarification, the other Coordinators in the Coordination Level will not

be discussed. The following subsections examine the Planning Coordinator.

3.2 Planning Coordinator: Macro Architecture

Physically, the Planning Coordinator is a functionally stratified, stand alone device operating as

a logical extension to the Coordination Level of the Intelligent Machine. It logically connects to

the physical communication scheme of the Intelligent Machine through external communication

ports. Unlike the other Coordinators in the Intelligent Machine, the Planning Coordinator does

not communicate directly to any piece of physical hardware or to the Organizer. To engage in

47

communication, the Planning Coordinator udlizcs the communication schemes that exist

between thc othcr Coordinators and the hardware they coordinate, as well as the communication

scheme between the Dispatcher and the Organizer.

As a logical extension to the Intelligent Machine, the Planning Coordinator is logically

subservient to whatever is considered to be the main controller of the Intelligent Machine. This

is necessary to ensure system coherence. In the event of a catastrophic main controller failure

the Planning Coordinator might assume the role of the overall system controller, but to a very

limited extent. The Planning Coordinator is expanded in Figure 7, to introduce the constituent

parts of its macro architecture, listed below. These parts are grouped by level.

Current World Model (CWM) -Level 1

Shadow Coordit_ation Level Petri Net (SCPN) - Level 1

Primitive Structure Database (PSDB) - Level 2

Node�Link Weighting Mechanism (N/L-WM) - Level 2

Mapping Mechanism (MM) - Level 2

Error Recovery Generation Algorithm (ERGA) - Level 2

System Fault Monitor (SFM) - Level 3

w Cu.ut_t
/ Coomina_n/ '.._Wo_ :

/ Pe,aN_/ Leve,,

MLx_nanl:._m

:_,_:i,/_:_:_ii_:: i_i:_
Map_ng

Mecttanlsm

Level 2

I System Fault Monitor, 1

Level 3

Figure 7

The Planning Coordinator (PCOORD) Constituent Parts

48

r

With the exception of the System Fault Monitor, these components constitute the mechanisms

whereby a task level error recovery (or on-line plan which henceforth is considered to be a

specific instantiation of an error recovery), will be successfully executed. The following

subsections elaborate on the seven constituent parts that comprise the Planning Coordinator. Of

highest significance to this Thesis Proposal are the five major component parts of the Planning

Coordinator: Current World Model, Primitive Structure Database, Node/Link Weighting

Mechanism, Mapping Mechanism, and Error Recovery Generation Algorithm.

3.2.1 The Current World Model

i,

The Current World Model is a dynamically changing, linguistic representation of the most

current environmental information available to the Planning Coordinator. Its function is to

accurately represent the most current status of the environment in which the Planning

Coordinator, and hence the Intelligent Machine, must operate. Unlike the long term, quasi-static

Global World Model, the Current World Model maintains a shorter term representation. With

two major exceptions, only a portion of the Current World Model will be active at any one time.

The first exception occurs when information from the Current World Model is initially

interpreted to create the Primitive Structure Database. The second exception occurs when the

Current World Model is called upon to update the Global World Model with new information

derived from the activities of the Planning Coordinator.

Note that in the development of the Planning Coordinator, it is anticipated that the Current

World Model will change significantly over a long period of time and as such, differ

significantly from the Global World Model. A question arises as to the need for the Current

World Model if a Global World Model exists and can be made to be accessed reliably and

efficiently. This question is answered as follows. The Primitive Structure Database, to be

49

jk

n

?.--.

\

discussed, represents Primitive Structures derived from the Current World Model. When the

Current World Model changes, the existing Primitive Structures are not lost. They remain in the

Primitive Smacture Database which is augmented through the addition of the new primitive

structures. Hence were the Global World Model to succumb to a catastrophic failure, none of

the information that had been contained in it would be lost. This is because the Global World

Model can be regenerated from the information stored in the Current World Model and the

information stored in the Primitive Structure Database. Thus it is necessary that the active

portion of the Current World Model maintain coherence with the corresponding portion of the

Global World Model. This coherence is ensured through communication and update between

the Current World Model and Global World Model. It is more important that as object and

event primitives are generated, that they have representation in both the Primitive Smacture

Database and the Current World Model. This coherence will facilitate the regeneration of the

Global World Model from the Current World Model and the Primitive Structure Database. This

regeneration is not of concern to this Thesis Proposal. It is considered to be potentially future

work outside of the scope of this Thesis, and is of itself a research area.

3.2.2 Shadow Coordination Level Petri Net

Within the hierarchy of the Intelligent Machine Model, task representation is performed through

the use of Generalized Stochastic Colored Petri Nets as described previously. To maintain the

continuity of this representation during its design phase, the Planning Coordinator utilizes a

Shadow Coordination Level Petri Net, as a graphical representation tool. It is anticipated that the

Shadow Coordination Level Petri Net will eventually become unnecessary and will be

eliminated as a graphical representation tool. However, its function will be maintained.

The Shadow Coordination Level Petri Net is functionally, an exact copy of the executing

Coordination Level Petri Net generated by the Dispatcher of the Coordination Level of the

5O

Intelligent Machine. Depicted in Figure 8A is a Coordination Level Petri Net, and in Figure

8B, the Shadow Coordination Level Petri Net, identified by its transitions. These transitions

maintain connections to Map Interface Error Recovery Nodes that reside within the Mapping

Mechanism of the Planning Coordinator. Through these connections it is possible to determine

the exact location from which an error recovery would bc enacted should the nccd for one arise,

since errors occur only at Petri Net n-ansidons. Identifying the locations of potential errors

pcrmhs the prc-crcation of most likely crrorcd event recovery plans. Hence when an error does

occur, and is the most likely crrorcd event, an immediate response is possible. Considering an

error that is not the most likely errored event requires the use of alternate plans. These alternate

plans arc built up from Primitive Structures that represent the actions and objects existing in the

environment of an intelligent machine. They can be stored in a database for retrieval. This

database is called the Primitive Structure Database and is the subject of the next subsecrlon.

(i

Figure 8A

A Coordination Level Petrl Net

/

P1

P5
14

P4

t3

Figure 8B

The Shadow Coordination Level Petrl Net Equivalent

52

3.2.3 The Primitive Structure Database

The Primitive Structure Database (PSDB) is a database containing Primitive Structures that

represent the basic operations that can be performed by an intelligent machine, as well as the

objects that exist in the environment of an intelligent machine. These Primitive Structures are

derived from the Current World Model which represents the most up to date environmental

information available to the intelligent machine. The formal definition of a Primitive Structure

is given below:

Primitive Structure

A potentially complex, building block created by the Planning

Coordinator, based upon environmental information contained in

the Current World Model, and functioning to represent the

primitive actions (objects) capable of being performed (identified)

by the intelligent machine. Several Primitive Structures can be

combined to form complex plans that can later be used as either

error recovery plans or on-line plans.

In keeping with the general structure of the Intelligent Machine Model, the Primitive Structures

are individually, live, safe, bounded Petri Nets. Synthesizing these smaller Petri Nets into

larger ones has been shown by Zhou, DiCesare, Narahari, and Koh to result in live, safe,

bounded Petri Nets given that the properties of liveness, safeness, and boundedness existed in

each of the smaller Petri Nets [Zhou 88] [DiC_.esare 88] [Narahari 88] [Koh 88]. In Section 2,

both Generalized Stochastic Colored Petri Nets and Semantic Networks were introduce& The

following builds on the descriptions of these two constructs.

The Primitive Structure Database is modeled using a Semantic Network. The Semantic Network

model makes use of nodes, representing events and/or objects, and directed arcs, representing the

_ 53

relationships betweenobjects. The nodes can be hierarchically structured, thus permitting

descendants to inherit form and function from their ancestors. This is important because the

descendants themselves may be separate nodes in the PSDB. In addition, through the use of

case_frames as previously described, inherent search limiting agents are built into the Primitive

Structure Database nodes. Finally, each of these nodes is connected in some way to other nodes.

The connections may be simple or multiple, depending upon the complexity of the Primitive

Structure Database. These connections are achieved through the use of linguistically identified,

directed, relational arcs. The relational arcs permit conceptual relations between the nodes and

as such are the natural points at which the strengths of such relations can be established. Since

the relational links are directed, they provide natural pathways from one node to another. These

natural pathways can be exploited to establish ordered error recovery or on-line plans. There is a

difficulty in using this approach, however. There may be multiple paths between any two nodes

in a network. To assign a strength value to each of the links between any two nodes and to

distinguish between the multiple paths that may exist between any two nodes (i.e., choose the

best path from among all), the Node/Link Weighting Mechanism was introduced. The

Node/Link Weighting Mechanism, is the subject of the next subsection.

3.2.4 The Node�Link Weighting Mechanism

The Node/Link Weighting Mechanism is one of the five major components of the Planning

Coordinator. It functions to assign fuzzy weights (f-weights) to the nodes and relational links

that comprise the SNet based Primitive Structure Database. The f-weights are used for two

purposes. The primary purpose is to establish the relational strength(s) of one node to another,

based on the linguistic relation connecting them. The secondary purpose is to combine the f-

weights assigned to each individual relational link in some established path plan, and defuzzify

the result. The defuzzified result provides the overall possibility of success number that the

plan's path represents. The possibility of success number is then used to hierarchically organize,

54

from highest possibility of success to lowest possibility of success, all of the plan paths whose

possibility of success numbers' exceed some established threshold value. This organized list,

called a plan execution list, contains those plans that have been deemed applicable to some error

recovery or on-line plan requesL

Once a possibility of success number has been determined, each of the relational links along the

plan path that is responsible for the number's creation is assigned an ordering identifier,

indicating which plan or plans in the execution list, the link refers to. The assignment of the

relational f-weights, the combining of a series of relational f-weights into an overall plan f-

weight, and the defuzzification of the overall plan f-weight into a 'crisp number' are examined

in the following subsections.

C
3.2.4.1 Assignment of Relational F-Weights

The universe of discourse represented in an intelligent autonomous system is that derived

from the system's knowledge of its environment as transformed into Primitive Structures

and the relationships between Primitive Structures. As has been stated, the Primitive

Structures are maintained in a non-fedback SNet which is a structure very similar to the

Fuzzy Cognitive Map of Kosko and Styblinski [Kosko 86] [Styblinski 88]. These

similarities permit the use of Fuzzy Cognitive Map techniques.

In establishing the Primitive Structure Database the fh'st step is to derive the Primitive

Structures and the relationships between Primitive Structures from the environmental

information. Here it can be assumed that the Primitive Structures have been made

available with no loss of generality. The resulting universe of discourse is an arbiwarily

large but finite set of interconnected nodes, similar in structure to the Dempster-Shafer

frame of discernment [Kosko 87]. The major difference results from the fact that the

55

universeof discourseis dynamic and hence it is necessary to use a Semantic Network base

which permits changes in the base without destruction of the existing base.

The Node/Link Weighting Mechanism utilizes a dynamic Fuzzy Rule Base created by an

Expert System from the available environmental information. Prior to the operation of an

x-autonomous system, there are basic rules available, akin to the instinctual capabilities

that human beings possess from birth. As the x-autonomous system begins to operate, its

environment changes and the Expert System derives new rules to be added to the dynamic

Fuzzy Rule Base. The feasibility of the dynamic Fuzzy Rule Base has been demonstrated

[Kosko 86]. The Primitive Structure Database, is initially a semantic network. Until

application of the Node/Link Weighting Mechanism, there are no f-weight relations. The

Node/Link Weighting Mechanism takes two connected nodes in the Primitive Structure

Database and their linguistic relational arc and applies them to the Fuzzy Rule Base. The

result of applying these two nodes and the arc is an f-weight, which is applied to the arc.

When two nodes have multiple connections, potentially differing f-weights are assigned to

each of the individual relational arcs. In this way, two nodes can have varying degrees of

relational strength, based on the relation itself. This same procedure is applied to all

pairwise nodes in the Primitive Structure Database according to the general procedure

oudined below.

General Procedure

(Prior to be#nning x-autonomous system operation)

Step 1: From information in the Current World Model, use Expert System to

derive dynamic Fuzzy Rule Base.

Step 2: From Current World Model derive the nodes and links for primary

semandc network.

56

Step 3: Beginning from any node in the resulting connected digraph, utilize

minimal time, complete search techniques to search and mark the entire digraph.

During marking, take any two connected nodes and the directed arc between them

and apply them to the Fuzzy Rule Base, resulting in an arc f-weight.

Step 4: Apply the f-weight to the relational link and return to Step 3 until the

entire digraph is done.

(Upon ¢0mpletion of _h¢ N0d¢ / Link Weighting)

Step 5: As new nodes are added to the newly created Primitive Structure

Database, begin at a newly introduced node and determine which node or nodes it

is connected to. Apply the newly introduced node and the nodes it is connected

to, to the Fuzzy Rule Base and determine an f-weight. Apply the f-weight to the

new relational link as before.

End Procedur_

Utilizing the above permits the establishing of a new Primitive Structure Database, or the

augmenting of an existing Primitive Structure Database. As has been described, it is

possible to start at one node (i.e., a start node) and efficiently trace out a path or paths to

another node (i.e., a destination node). It is likely that with the high probability of

multiple connections existing between two nodes, there will be multiple paths between two

nodes. Within the confines of error recovery it is necessary to differentiate these paths

into a hierarchically ordered plan execution list. This requires the combining of individual

link f-weights into an overall plan f-weight, the subject of the next subsection.

57

3.2.4.2 Determining Overall Plan F-Weight and Creating Plan Execution List

Once the Primitive Structure Database has been constructed it is ready to be used by the

Planning Coordinator for error recovery. In its final form, the Primitive Structure

Database resembles a Fuzzy Cognitive Map. This resemblance permits the application of

Fuzzy Cognitive Map Summation Methods to sum the individual link weights along a

particular path. Once the weights along a particular path have been summed, the overall

value is defuzzified into a crisp number. This crisp number is then used for comparison

against a threshold value. If the number exceeds the threshold value, the plan is

considered viable and is placed in the plan execution list. The general procedure is given

below:

Plan Execution List Generation

Step 1" Identify plans generated by Primitive Structure Database search.

Step 2: For each plan, start at the start node and trace plan through to the

destination node. At each connecting link, assign plan identifier to each link

along the plan path, and store each link fuzzy value.

Step 3: For each traced through plan, take link fuzzy values and apply Fuzzy

Cognitive Map Summation Method to it. Defuzzify the result into a crisp number.

If the crisp number represents a value that exceeds the established threshold

value, store the value and the plan identifier in the Plan Execution List, else

discard it.

k.

Note: If crisp number represents first plan, store in first slot of Plan Execution

List regardless of its value. This will ensure that at least one plan is available to

be tried. For each subsequent plan entered into the Plan Execution List, use

binary search to find the correct position for the new plan in the Plan Execution

List. If subsequent plan values exceed the first plan value, but do not exceed the

threshold, then replace the first plan with the subsequent plan.

58

Step 4: Update link identifiers in Step 2, to reflect plan position in the Plan

Execution List of Step 3.

Note: It is possible that a single link may be needed for more than one plan. Due

to this possibility, a single link may have multiple identifiers.

End Procedure

The result of this general procedure is a Plan Execution List containing ordered viable

plans, with ordering numbers. These ordering numbers are used to execute the plans

sequentially until one plan is successful or until all plans have been exhausted. If a plan is

executed and is successful, the plan is rewarded. If a plan is unsuccessful, it is penalized.

The method of applying a reward or penalty is as yet undetermined and remains an open

area for further research. Previously, it was stated that through the Shadow Coordination

Level Petri Net it is possible to immediately identify where an error recovery must begin

and end. This is due to the fact that errors can occur only at the Petri Net transitions.

These transitions axe connected to Map Interface Nodes that reside on Level 2 of the

Planning Coordinator. The following section introduces the Map Interface Nodes as well

as the Mapping Mechanism of the Planning Coordinator.

3.2.5 Mapping Mechanism

The desired one-to-one mapping mechanism of the Planning Coordinator is both a structure to

maintain three specific node types and a methodology to efficiently perform the following three

functions:

1. Connect Shadow Coordination Level Petri Net transitions to Map Interface

Nodes.

_ 59

i

2. Connect Primitive Structure Interface Nodes to their Primitive Structures in

the Primitive Structure Database.

3. Create Experience Vector Nodes based upon previously enacted, successful

error recoveries.

The three different node types are defined below.

Map In_erface N_XlO

A dynamically allocated, two or three port active, interface point that connects to

a Shadow Coordination Level Petri Net transition, the start (end) node of an error

recovery or on-line plan, and an Experience Vector Node. Two Map Interface

Nodes are created for each Shadow Coordination Level Petri Net transition. They

are created at the same time as the Shadow Coordination Level Petri Net.

Primitive Structur_ Interface Node

A Primitive Structure Interface Node represents a pointer to a Primitive Structure

in the Primitive Structure Database. It is necessary that each Primitive Structure

be represented by a Primitive Structure Interface Node to ensure the identification

of the start and end nodes of an error recovery or on-line plan.

Experience Vector Node

An Experience Vector Node is attached to the third port of the input Map

Interface Node (i.e., the side connected to the input side of the Shadow

Coordination Level Petri Net transition). It represents a successfully enacted

error recovery or on-line plan sequence. The Experience Vector Node maintains

the entire plan path through a vector of Primitive Structure Interface Node

identifiers. These identifiers maintain the order of execution of the nodes. In

addition, the Experience Vector Node maintains the state of the system when the

error occurred. This permits an immediate response to an identical error.

Note that if the same error recovery does not work for an identical error, the

Experience Vector Node is updated with information on the new error solution,

when the new error solution is found.

60

In order that a Map Interface Node can connect to any Primitive Structure Interface Node, as is

required for the operation of the Planning Coordinator, the network of Map Interface Nodes and

Primitive Structure Interface Nodes must be a fully connected network. The choice of which

links in the Map Interface Node / Primitive Structure Interface Node network to make active and

which to leave inactive is determined by the places in the Shadow Coordination Level Petri Net

that immediately precede and follow a transition connected to a Map Interface Node.

A considerable amount of the work that the Planning Coordinator must do can be done while the

overall Intelligent Machine is not engaged in error recovery. As a result, the preprocessing of

the error recovery plans can be done in parallel with the execution of the Intelligent Machine,

saving overall execution time. This does not mean that the Planning Coordinator's primary

function as an error recovery unit remains dormant until the preprocessing is done. The

Planning Coordinator's overall function is governed by the Error Recovery Generation

Algorithm, the subject of the next subsection.

3.2.6 Error Recovery Generation Algorithm

The Error Recovery Generation Algorithm governs the operation of the Planning Coordinator.

The algorithm itself assumes the availability of specific information from the InteUigent

Machine, the accessibility of communication ports to the Intelligent Machine and priority over

all other coordinators. Some of the information which must be provided by the Intelligent

Machine to the Planning Coordinator includes.

• Error status based upon a flag called ERR_FLAG. If asserted, an error is

present. If not asserted, no error is present.

-- 61

• On-line Plan status based upon a flag called OP_FLAG. If asserted without

ERR_FLAG, a short term on-line plan is required. If asserted with

ERR_FLAG, an interactive on-line plan is required.

• Intelligent Machine main controller status based upon a flag called

MC_FAIL. If asserted, the main controller has failed.

Figure 9 shows the two stage flow diagram of the operation of the Error Recovery Generation

Algorithm. Stage 1, details the preprocessing of the initial Current World Model, Fuzzy Rule

Base, and Primitive Structure Database. Stage 2, details the preprocessing of the initial error

recovery routines and the processing of error recoveries, on-line plans, and modifications to the

Primitive Structure Database. The steps involved in the Error Recovery Generation Algorithm

are detailed following the figure.

Prior To Commencing Operation of the Intelligent Machine

te gu.A

From the Global World Model create the Current World Model. Initially, the

Current World Model and the Global World Model will be the same.

te.S_gp_

A) From the Current World Model, use an Expert System to create the dynamic

Fuzzy Rule Base. Initially this base may contain rules that are considered to be

instinctual.

B) From the Current World Model, derive the underlying Semantic Network of

the Primitive Structure Database. This includes both nodes and links.

C) For each node created for the underlying Semantic Network of the Primitive

Structure Database, create a Primitive Structure interface node.

\,

From the Fuzzy Rule Base and the Semantic Network create the Primitive

Structure Database by marking the SNet and applying each pairwise connected

set of nodes and their connecting link to the Fuzzy Rule Base, yielding an f-

weight.

62

f"

!

C
I Cr°ale PS06 ISNel

Start

=

YES

I Cre=_ / Augment I
psos- I

l Create / Augment]PSDB I

I Create / AugmentSCPN & MM 1

YES

[. N_uc _

1
[R,,q.=c=,= J

J
t E==_ AP._=m]

Error Recoveq, I

Figure 9
Functional Flow Diagram

YES

-- 63

After Commencing Operation of the Intelligent Machine

tea_t.¢ 2

Create Shadow Coordination Level Petri Net and establish connections to Map

Interface Nodes.

While neither ERR_FLAG, nor OP_FLAG nor MC_FA1L is asserted perform

Step 5 else perform Step 6:

A) Preprocess most likely erroreA event for each Shadow Coordination Level

Petri Net transition and store resulting plan.

B) Monitor introduction of new information into the Current World Model. If

applicable perform Step 2 and augment Primitive Structure Database as per Step

3.

Using ERR_FLAG, OP_FLAG and MC_FAIL, attempt to identify the error from

the information given by the Intelligent Machine. For ERR_FLAG and

OP_FLAG, determine the Shadow Coordination Level Petri Net transition from

which the error began, and activate Map Interface Node. For MC_FAIL, assume

system control and attempt system restoration. If successful, return system control

to the Intelligent Machine main controller. If unsuccessful, notify external base

for assistance and gracefully shutdown Intelligent Machine operation.

Note: There are several types of errors possible during task execution. These

error types are outlined in Subsection 3.4.1.

ateazY_

Notify the Intelligent Machine's main controller that an error has occurred.

Note that the main controller may already know that an error has occurred.

step is to ensure the continuity of error data transmission.

This

4

A) Request control of the Intelligent Machine's operation from the main

controller to prevent interference during error recovery. If not granted, re-try four

times. If not granted, abort error recovery.

B) If granted, analyze error information from Step 6. If information is sufficient

to enact error recovery, do so. Otherwise use system components (i.e., Vision

System, Motion Control System etc.) to try to gain further information on the

error type.

te.S_tw_2
A) If an error is the same as the calculated most likely error, then execute the

preprocessed most likely error, error recovery. If the error is not the most likely

error, then establish recovery plans in the plan execution list.

B) Execute first plan in the plan execution list. If successful return control to

main controller. If unsuccessful, execute remaining plans in the plan execution

list until either all plans are executed or one is successful. If no plans are

successful, report irrecoverable error to the main controller and return control to

the main controller.

Step 10

Return to Step 5 and continue.

This concludes the Error Recovery Generation Algorithm.

System Fault Monitor.

The next subsection outlines the

3.2.7 System Fault Monitor

The System Fault Monitor functions to monitor and perform hardware diagnostics of the

Planning Coordinator and if desired, the Intelligent Machine to which the Planning Coordinator

is connected. Although it performs an error recovery function for hardware, the System Fault

Monitor is not one of the major components of the Planning Coordinator. This is because its

65

function is in anareathat hasbeenvery highly developed.Existing fault diagnostictechniques

do suffice. As such,thefurtherdevelopmentof theSystemFault Monitor will not be considered

for this Thesis Proposal.

3.2.8 Summary

The Macro Architecture of the Planning Coordinator consists of seven components, five of

which are essential for the successful completion of the Planning Coordinator's function as an

error recovery unit. These five components are the Current World Model, the Primitive Structure

Database, the Node�Link Weighting Mechanism, the Mapping Mechanism, and the Error

Recovery Generation Algorithm. Functioning together, these components provide an architecture

suited to the desired function. The architecture itself, however, requires an internal

communication and message passing scheme as well as appropriate interfaces to the Intelligent

Machine. These two topics are the subject of the next subsection.

3.3 Planning Coordinator Communication and Interface Description

The requirements of the operation of the Planning Coordinator necessitate significant

communication between its component parts and between it and the intelligent machine to which

it is connected. With respect to the InteUigent Machine Model, the Planning Coordinator must

have access to at least the Dispatcher. It is possible for the Planning Coordinator to use the

Dispatcher to communicate not only to the Organization Level of the Intelligent Machine but

also to the Coordinators and thus, the Execution Level hardware. The communication schemes

that need to be implemented are the subjects of the following subsections.

66

3.3.1 Internal Addressing Scheme

. , ,

The Planning Coordinator maintains seven components, six of which can be but may not

necessarily be physically distinct. It is expected that the Planning Coordinator will migrate to a

parallel processing architecture and it is on this basis that a multipoint addressing scheme is

desired. As depicted in Figure 10, all six of the physically distinct components that comprise the

Planning Coordinator maintain communication through a single shaxed bus. In addition to these

six components is a seventh component called an External Communication Link. to be discussed

in Subsection 3.3.3. A secondary bus exists between the Current World Model, the Node/Link

Weighting Mechanism and the Primitive Structure Database, due to the potentially high

communication level that will exist between the three components.

BUS 0

, I I ,,,

I[r II I's a°w'External Current Node/Link Primitive [Coordination [Communication World Weighting Structure

Database I PetriNet ILink Model [Mechanism [Level [

Mapping
Mechanism

I
Error

Recovery
Generation
Algorithm

Bus I

Figure 10
Internal Planning Coordinator Addreslng Scheme

The first bus, designaed BUS O, is the primary shared bus. Each of the components connected

to this bus is assigned a communication addxcss. By definition, this scheme is called a

multipoint addressing scheme because more than two physical devices shaz_ the same

67

transmission medium. The duplexity of this communication scheme is multipoint duplex. This

indicates that all physical devices are capable of sending and receiving over a single bus.

The internal line discipline of BUS 0 requires that all devices be considered as peers to facilitate

intradevice communication. This discipline is called contention. If the communication-line is

free, then any device can transmit on it. If the line is not free, then a device must wait. In terms

of transmitter-receiver identification, this scheme requires the transmitter to identify both itself

and the intended receiver, a technique called peer multipoint. The internal addressing scheme

presented is aggressively used in computer satellite systems and local area networks. It is often

combined with a message passing or packet communication technique to facilitate short duration

transmission.

Bus 1 is a dedicated communication bus between the Current World Model, the Node/Link

Weighting Mechanism and the Primitive Structure Database. This dedicated bus is necessary

due to the potentially high communication demands between the Current World Model, the

Node/Link Weighting Mechanism and the Primitive Structure Database. There are two specific

times that high communication would load down Bus 0, necessitating the existence of Bus 1.

The first of these times is when the Primitive Structure Database is initially created. The second

of these times is when the Current World Model drastically changes, requiring a drastic addition

to the Primitive Structure Database. Between these three components of the Planning

Coordinator, a transmission scheme that is different from the one used for Bus 0 is necessary.

The internal transmission schemes used by the Planning Coordinator are the subjects of the next

subsection.

3.3.2 Internal Transmission Schemes

7

68

Transmission via Bus 0 does not require a relatively continuous flow of data between two

specific sources, such as in a voice telephone call or telemetry data communication. Rather the

data is transmitted in short duration, high volume bursts among seven different points of

communication without the requirement of a dedicated communication link. This type of

communication favors the dynamic-packet, message passing transmission scheme which is the

transmission choice for Bus 0 communication. The dynamic-packet, message passing scheme

allows the sender and receiver to send dynamic length messages to each other. Length

identification, and sender identification are stored in header information contained as part of the

message itself. The receiver decodes the sender information, checks the message and

acknowledges receipt of the message. Transmission error checking protocol is accomplished

through parity checksums.

In contrast to the message passing transmission scheme implemented on Bus 0, Bus 1 utilizes a

circuit switching transmission scheme. This is because the communication needed between the

components on Bus 1 axe of a long duration, continuous data flow nature. Disruption of the

communication can be catastrophic. Again, standard transmission error correction is used, (i.e.,

hamming codes) and need not be discussed. The two transmission schemes presented are

sufficient for the operation of the Planning Coordinator. The next subsection introduces the

external communication scheme between the Planning Coordinator and an intelligent machine.

3.3.3 External Communication Link

The External Communication Link is responsible for communication between the Planning

Coordinator and the external intelligent machine that the Planning Coordinator is attached to.

The External Communication Link, as depicted in Figure 11, connects on one side to the

Planning Coordinator's Bus 0, and on the other side to an external communication port on the

Intelligent Machine. Internally the External Communication Link contains a dedicated

69

processor, a high amount of buffer memory and a dynamically configurable communication

port. Functionally the port protocol is established through handshaking between the Planning

Coordinator and its intelligent machine counterpart. Electrically it is necessarily expected that

both systems will be standard. It is possible to establish an electrical switching protocol in the

event that a non-standard configuration is encountered. However, this is considered to be

potentially future work and is not considered in this Thesis Proposal.

3onnect Bus 0

Dedicated _--Processor

Connect i Dynamically Configurable JIntelligent Communication Port

Machine _

RAM 1
RAM

3.3.4 Summary

Figure 11
External Communication Link Internal Architecture

The Planning Coordinator communication and interface description is such that it provides for

the growth of the Planning Coordinator through the inclusion of additional components such as

the System Fault Monitor. It is robust enough to provide for the communication needs of the

Planning Coordinator. Nevertheless there is room for considerable expansion and enhancement

of the communication system. The remainder of this section is dedicated to the functional

description of the Planning Coordinator, from initial connection to overall operation.

70

3.4 Functional Description

(,

The primary functions of the Planning Coordinator axe to efficiently enact task level error

recovery and in the event of catastrophic failure of the main controller of the intelligent machine,

to which the Planning Coordinator is attached, act as a minimal backup to the intelligent

machine. Note that catastrophic failure of the main controller, is the only non-task level error

that the Planning Coordinator is designed to handle and is not to be confused with an

irrecoverable error generated by an autonomous task. A secondary function of the Planning

Coordinator is to perform on-line planning of autonomous tasks. This function is viewed as an

extension to the error recovery function and is treated as such. Functionally, the Planning

Coordinator will react differently when presented with differing 'error types.' The differences

between error types and the modes of operation that the Planning Coordinator engages in are the

subjects of the following subsections.

3.4.1 Error Types: Definitions and Severity

An error, as defined for the purposes of this Thesis Proposal, is an anomaly in the operation

and/or execution of a task. The following error types are the general error categories that can be

expected during the operation of a task. Note that these error types are defined only in the

context of task level operations. They are not defined for the purposes of internal hardware or

software glitches. These glitches are the responsibility of the System Fault Monitor and will not

be discussed further in this Thesis Proposal.

No Error

No Error is an error type that indicates an on-line plan is needed as opposed to an

error recovery. This type of error is identified through the raising of the

OP_FLAG flag.

71

m.

Tolerance ErrQr

A Tolerance Error is an error type resulting from a parameter being out of

tolerance by a small margin. The fix for such an error is dependent upon the task

being performed. For example, if an insertion task is being performed where the

error results from a slight misalignment of the joined parts, the fix for it may be

to apply a slight perturbation to the parts until they are back within tolerance.

The severity of a tolerance error is low.

Minor Error

°4

A Minor Error is a singularly occurring anomaly resulting from the execution of

a task. It is possible that the repeated execution of a task will result in the exact

same error recurring. It is for this reason that a frequency counter is associated

with an error when the error occurs. In addition, an aging identifier is associated

with each error occurrence. This aging identifier is used to distinguish between

error occurrences, facilitating a distinction between minor and major errors.

Major Error

A Major Error is defined as a recurring Minor Error, with the number of

occurrences exceeding a threshold, within a given time limit.

Irrecoverable Error

An Irrecoverable Error is defined as either:

or

A single error of either the Minor or Major type that causes a continuous

flow of errors, distinct from the original error, but the result of the original

error. "Snowballing"

A condition caused by the inability of the Planning Coordinator to facilitate

an error recovery, or a condition which causes the task operation of the

72

intelligent machineto forcibly halt, requiringoutside intervention.

thatthis is different thanacatastrophicerror.
Note

Upon identification of an irrecoverableerror, notification is sent by the main
controllerof the intelligent machineto ahumanoperatoror externalinformation
basefor assistance.

Catastrophic Error

C

A catastrophic error is a failure of the main controller of the intelligent machine

hierarchy to which the Planning Coordinator is attached. It is identified by the

assertion of the MC_FAIL flag. Recovery from this error is accomplished

through an attempt to restart the intelligent machine (i.e., via reboot, hard reset,

etc.). Failing a restart of the intelligent machine, immediate notification of the

problem is sent by the Planning Coordinator to a human operator or other external

information base for assistance. In addition, the Planning Coordinator attempts to

place the intelligent machine hierarchy in a quiescent state until assistance arrives.

These error types are used by the Planning Coordinator to perform its error recovery. The

following subsection examines the error recovery mode of operation of the Planning

Coordinator.

3.4.2 Error Recovery

("

_L
\

Error recovery is the default mode of operation of the Planning Coordinator. While in this

mode, the Planning Coordinator is in either an observer or an actor state. The Planning

Coordinator's default state is that of an observer, monitoring the execution of the Intelligent

Machine's Coordination Level Petri Net through the previously described Shadow Coordination

Level Petri Net. While in this state, the Planning Coordinator is a strict monitor and does not

interfere in the operation of the Intelligent Machine. The Planning Coordinator changes to the

-- 73

(actor state only when an error occurs. Its active role is limited to the execution of task level

error recovery plans.

The operation of the Planning Coordinator while in error recovery mode is outlined in the block

diagram descriptions of Figure 12. Each of the four main blocks is described below.

Block B 1

The Planning Coordinator periodically monitors the action of the Shadow

Coordination Level Petri Net, waiting for an interrupt indicating the assertion of

ERR_FLAG, OP_FLAG, or MC_FAIL. While none of the flags are asserted, the

Planning Coordinator engages in other functions. These other functions include

update of the Primitive Structure Database, and creation of most likely errored

events.

Block B2

Once an error recovery interrupt has occurred, the Planning Coordinator status is

changed from observer to actor, and the Planning Coordinator begins its error

recovery function. First the Planning Coordinator attempts to qualify the error by

obtaining error information from the intelligent machine. If the information is

available, the Planning Coordinator reacts to it and creates the appropriate error

recovery route utilizing the appropriate section of the Error Recovery Generation

Algorithm.

Note 1: It is because the Planning Coordinator utilizes the Shadow Coordination

Level Petri Net and the Mapping Mechanism to identify the location of the error

that an error recovery can be enacted quickly. This structure allows for the

[complete] minimization of the search space that the Planning Coordinator would

otherwise have to search to characterize the error and determine a course of

action to take.

Note 2: The Planning Coordinator is necessarily subservient to the main

controller of the intelligent machine to which it is connected. This limitation

permits the main controller to actively abort any error recovery.

74

C:

ii

State: Actor

ERR_FLAG - 1

B1

Sidle: Observer I

E RR_FLAG = 0

Func0on:

Mo_itcx System Cperat_on

Perf_m other Functions
I

B2

I

If err_Ink) - =uff_enl

(
PCOORD GeneratesPlan

PCC_RD ReClU_StsSystem Control

If granted, got,o B..3_ sys_arnreturns ¢oBI

!
else

(
PCCQRD Requesl:sSystem Control
If granted, PCC(3RD Or)rains Error D,_ else B1
PCCX_RD Genefales Plan

PCCORD Requests Execudon Clearance

If gNen, then B3
else Bt

I

B3
I I I

State : Acux

ERRFLAG = !

PCOORD 5_luen_l y Executee ERGA

Mordlof= Executk_nof Ran _ New Errors

If New error, _ B2 else conunue

B4

On o_n_ of error rec0vee/, PCOORD updates GWM

and oif-,ersources wi_ relevant Inlormaoon

PCOORD relume Inl_l_ _ ID =ucceM ste_ (I.e.

_le poi/on it exd_ectJldi,.,be in if error did notoccur)

PCOORD requN_,, dea" of ERRFLAG. If yes, _h_ ERR_FLAG=0
& Slau= : Observer -= B1. Else B2

I

Figure 12

Operation of Planning Coordinator In Error Recovery Mode

75

Block B_

The Error Recovery Generation Algorithm has been used to create an error

recovery plan. Each component Primitive Structure is monitored for error as it

executes. If a new error is caused during the error recovery, it is handled in the

same manner as any other error with the exception that the new error is handled

first. Requests for system control are again made to the main controller, but in

the case of nested errors, the main controller is the Planning Coordinator.

Bloqk B4

Once an error recovery has been completed, it is the responsibility of the Planning

Coordinator to update all relevant information to correctly reflect the state of the

intelligent machine prior to returning control of the intelligent machine to the

main controller. Once control has reverted back to the main controller, the

Planning Coordinator's status reverts back to observer.

This concludes the functional description of the Planning Coordinator during its error recovery

mode. A second mode of operation that the Planning Coordinator engages in is on-line planning.

This Thesis Proposal advocates the structuring of the on-line planning as a specific instantiation

of an error recovery. On-line planning is the subject of the next subsection.

3.4.3 On-Line Planning

The need for on-line planning in an autonomous intelligent machine is indisputable. The

mechanisms for realizing on-line planning are many. The Planning Coordinator architecture

recognizes on-line planning as a specific instantiation of an error recovery. This is due to the

fact that an on-line plan must use the same basic information required by an error recovery plan

(i.e., the Current World Model and Primitive Structure Database). However, the active

information needed by an on-line plan is not as varied as that needed by an error recovery plan.

Often the information needed is a verification of, or modification of, specific parametric

76

information. With respectto thePlanningCoordinator,on-line planning is broken up into two

sub-categories: Short Term On-line Planning and Interactive On-line Planning.

3.4_3.1 Short Term On-line Planning

Short Term on-line planning is performed while the Planning Coordinator is in an observer

state. It results from an insufficiency in the information available when the original long

term, off-line plan was created by the Planning Level, here the Organization Level, of the

intelligent machine architecture. In this case, the needed information is available after

some sequence of events has taken place. Effectively, the on-line planning takes

advantage of the Planning Coordinator's error recovery platform to create on-line plans

dynamically. This procedure is initiated by the sole assertion of the OP_FLAG.

C The Organizer must recognize the need for an on-line plan. Thus within the structure of

the Petri Net passed down by the Dispatcher, a transition is defined to be an on-line plan

transition. When the Shadow Coordination Level Petri Net is created, this transition is

expanded such that when it becomes active, the OP_FLAG is asserted. Thus using the

existing parameters and the Error Recovery Generation Algorithm, an on-line plan is

created and executed. In this case, the on-line plan will likely correspond to the most likely

errored event and can be preprocessed. If an on-line plan is in the process of being

pregenerated and an error recovery is needed, the error recovery will take precedence.

Interactive on-line planning is handled similarly and is the subject of the next subsection.

3.43.2 InteractiveOn-linePlanning

i,

The nccd for InteractiveOn-line Planning presumes thatexpected conditionscan change

from the time an off lineplannercreatesitsplan,to the time the plan isactuallyexecuted.

_ 77

The changes are often in the parameters under which the task must operate. Changes in

these parameters may or may not induce an error. The original off line plan must be

capable of realizing that particular parameters may change, and as such allow for the

verification of those parameters.

In this case, the off-line planner permits a transition to be created, such that the transition

simultaneously activates the ERR_FLAG and the OP FLAG. When the Planning

Coordinator sees this, it understands that a parameter verification is required and executes

a specialized function which takes as input the parameters to be verified, and provides as

output the corrected parameters. It is the function of the main controller to determine

whether these parameters are valid or not. If they are not, then an error recovery may be

initiated. If they are, then the system continues operation unimpeded.

The operation of the Planning Coordinator, from connection to the Intelligent Machine

through error recoveries and reconfiguration of the Current World Model and Primitive

Structure Database is demonstrated in the comprehensive example of the following

subsection.

3.5 Example Operation of the Planning Coordinator

The following subsections present examples of the operation of the Planning Coordinator. In

each case, the intelligent machine under consideration is explained as fully as possible. In

addition, the components of the Intelligent Machine Model are listed for clarification.

78

3.5.1 Robotic Assembly Workcell: Strut Insertion

The following example uses the dual arm, vision aided, robotic testbcd in the Center For

Intelligent Robotic Systems For Space Exploration (CIRSSE) as its basis. As such, the Planning

Coordinator is used as a supplement to the Intelligent Machine Model upon which the CIRSSE

testbed is based. The testbed was initially designed for application of space related robotic

functions but also has application to terrestrial robotics. It features two, six degree of freedom

robotic arms, each secured to a pan-tilt platform that is itself mounted to a linear-track cart. This

provides nine degrees of freedom for each of the robotic arm assemblies. Mounted on one of the

robotic arms are two cameras to assist in the positioning of the arm for grasping, and to assist in

general stereo vision applications. Mounted on the ceiling are two all purpose cameras and a

laser scanner, used for general position identification. Force sensors provide feedback from each

non-articulated gripper. Computer control is provided by an Etherlinked Sun station computer

network used for code generation and compilation. A Motorola VME cage is used to execute

the object modules, representing the operational code which are dynamically linked when

loaded. Figure 13 indicates the relative positions of each of the testbed components, a table that

is used to hold structures, and a strut holder used to hold struts that are later taken as finished

material for insertion.

Figure 13
ClRSSE Testbed

79

Figure 14 presents a comprehensive block diagram of the Intelligent Machine Model

representative of the CIRSSE testbed. This diagram logically includes the Planning

Coordinator. With respect to the overall CIRSSE testbed, the Planning Coordinator connects to

the VME cage through a communication port on one of the communication cards inserted into

the VME cage. It is assumed for this example that this is the first time the Planning Coordinator

is connected to the CIRSSE testbed.

Figure 14

The Intelligent Machine Model Hierarchy
Of ClRSSE Testbed. Includes PCOORD

The first step is to establish communication between the CIRSSE testbed and the Planning

Coordinator. This is accomplished by first physically connecting the Planning Coordinator to

80

.----

[

\.k

the CIRSSE VME cage. Once this has been accomplished, the connection causes an I/O port

interrupt. This results in the initiation of handshaking protocol between the Planning

Coordinator and the CIRSSE testbed main controller, through an interrupt service routine, a

function of the CIRSSE testbed. The main controller sends put a query to the testbed

communication port at which the Planning Coordinator resides. The Planning Coordinator

interprets the query and dynamically configures its communication port to match the parameters

of the query. It then responds to the main controller that it is active and negotiates the frequency

of a keep alive communication signal. This signal is passed between them at regular intervals,

sufficient to identify the liveness of the components, but not enough to bog down either the

Planning Coordinator or the CIRSSE testbed communication schemes. This structure is used by

the Planning Coordinator to ascertain if the MC_FAIL flag should be asserted. If multiple keep

alive signals sent from the Planning Coordinator are not responded to by the CIRSSE testbed,

the CIRSSE testbed is considered to have failed.

In addition to the keep alive signal, the Planning Coordinator requests two other major pieces of

information from the CIRSSE testbed main controller. The first piece of information is the error

identification code transmitted when an error occurs during task operation. Note that it is

assumed here that such information is available and will be transmitted along the main

communication bus between the Dispatcher and Coordinators of the Coordination Level. The

Planning Coordinator, through its External Communication Link, monitors the communication

bus and uses this information to assert ERR_FLAG, identifying the start point for its error

recovery scheme. The second piece of information requested is a dump of the GSCPN created

by the Dispatcher when the Dispatcher creates an Operational Petri Net for task execution. This

dump facilitates the creation of the Shadow Coordination Level Petri Net. After receipt of the

error code and acknowledgment of the request for GSCPN, the Planning Coordinator requests a

dump of the Global World Model from which the Current World Model is constructed. Since it

81

is thefh-sttime thatthePlanningCoordinatorhasbeenmadeactive, the informationstoredin the

CurrentWorld Model is identicalto thatstoredin theGlobalWorld Model.

The Planning Coordinatorstoresthe transmitteddata from the Global World Model. It is

assumedthat theGlobal World Model is a geometricrepresentationof the objectsthat exist in

the environmentof the intelligent machine. In addition to the geometricrepresentation,it is

expectedthat theGlobal World Model will havesomeideaasto thefunctionsperformedby the

known objects in the environment. Under theseassumptions,the Global World Model is

transformed into a linguistic representationof objects and functions, where the linguistic

representationimplementsthe case_frame construct as the representation tool. This is the

Current World Model. Upon completion of the transformation of the Global World Model

information, the Planning Coordinator begins to derive the underlying semantic network for the

Primitive Structure Database, and the Dynamic Fuzzy Rule Base. The Dynamic Fuzzy Rule

base begins with rules generated from the basic structure of the intelligent machine under

consideration, akin to the instincts that humans possess from birth. As such, there is always a

predetermined starting point for the Rule Base. Using either an expert system or specified

combining techniques these rules are augmented. In parallel with the development of the Fuzzy

Rule Base, the underlying semantic network representing the Primitive Structure Database must

be derived. This is done by reading the Current World Model and interpreting objects and

events from the data stored there. Note that there is an inherent difficulty here. If the Global

World Model does not have an informed geometric representation of the environment (i.e., an

understanding of the basic objects in the environment and how they function), then it will not be

possible to create a sufficient linguistic representation of the information. This will prevent the

autonomous creation of the underlying semantic network for the Primitive Structure Database,

and it will not be possible to derive the Fuzzy Rule Base. Here it is assumed that the Current

World Model possesses the desired qualifies.

82

From the Current World Model's linguistic representation of objects and functions, the object

and event nodes of the underlying semantic network are created. In particular, it is from the

geometric information of the Global World Model that the object nodes are created and it is

from the knowledge of their function(s) that event nodes are formed. These nodes are

qualitatively linked together to form an unweighted semantic network through the linguistic

parsing of the representations in the Current World Model. Each node still represents a

case.frame. However, from the parsing, the case_frames are identifiable as either object or

event nodes. For each of the nodes created for the semantic network, a mirror Primitive

Structure Interface Node is created for the Mapping Mechanism.

f

When both the underlying semantic network and the dynamic fuzzy rule base are completed,

construction of the Primitive Structure Database begins. Starting from any node in the semantic

network, label the node and follow one of the directed links to a connected node. Take both

nodes and the connecting link and apply them to the Fuzzy Rule Base. If both nodes are object

nodes, then the nodes represent a start point and an end point for the link between. After

applying the nodes and link to the Fuzzy Rule Base, a fuzzy weight, representing the strength of

the connection is determined and applied to the connecting link. If one node is an object node

and one node is an event node, then a search from the event node is initiated to find all

connected object nodes. The triple formed by the original object node, the event node, and

individually, each of the other object node(s), along with their two interconnecting links are then

applied to the Fuzzy Rule Base. This results in a fuzzy weight applied to the connecting links.

This procedure is repeated until all nodes are labeled and all links are weighted. The Primitive

Structure Database is now complete. No specific labeling algorithm has been chosen. A

minimal time one is suggested. Figure 15 and Figure 16 depict respectively, a representative

but not comprehensively expanded Global World Model, and a Current World Model. It must

be noted that the functional specification of the object and event nodes is contained in the

case.frame represented by the nodes. It is not explicitly shown in the linguistic model of the

83

Current World model, except in the identification of a word as an object node or event node, as

per Figure 16. Figures 17 through 20 depict a representative underlying semantic network and

the result of applying the underlying semantic network nodes and links to the Fuzzy Rule Base,

the Primitive Structure Database.

Floor

ARM - 1

LASER
SCANNER

Tracks I ARM - 2 1_

] TABLE]

Figure 15
Representative Global World Model

_Strut _Holder _seated_ on _floor.

Cam 1 suspended from _ceiling.

_Cam_2 suspended from ceiling.

_LASER_SCAN suspended from ceiling.

_Arm_l _mounted_ to tilt _bracket on linear _track.

_Arm_2 mounted on tilt bracket on linear track.

Linear track mounted to _floor.

_Word = Object Node -> Object Case_Frame
Word = Event Node -> Event Case_Frame

Figure 16
Representative Current World Model

84

_ Object _ [EventL(Actlon) 1

Figure 17
Representative Underlying Semantic Network With Unwelghted Links

C
Ceiling

I LASER
Cam SCANNER

Suspend I ARM

I Track
Holder

Mount

Bracke_

Strut I

I Table I

Event
Object ._ L(Actlon)]

Figure 18
Representative Weighting of Object - Object Connection

Depicted With Bold Line

/

I Track

Floor

Strut

Seat Table

85

(Event 1
Object) [(.ctlon)J

Figure 19
Representative Linguistic Weighting o! Object - Event - Object Connection

Depicted Wlth Bold Lines

I Track

Floor

Holder Strut

Seat Table

Object _
Event

(Actlon)J

Figure 20
Representative Primitive Structure Database

Note: For Diagram Clar'lly, Ilngu|stlo weighting not shown

86

This work has been done prior to the actual beginning of the operation of the intelligent

machine. At this point, the intelligent machine begins operation. Its f'trst task is to create a

triangle by inserting a single strut into a v-shaped strut construct located on the table in the

assembly workcell. A GSCPN representing this operation is generated by the Dispatcher and is

depicted in Figure 21. Due to the previous code identification setup, an equivalent Shadow

Coordination Level Petri Net is generated from the GSCPN. The transitions of the SCPN are

immediately connected to their respective Map Interface Nodes. The SCPN is depicted in

Figure 22, along with the Map Interface and Primitive Structure Interface Nodes corresponding

to the SCPN transitions and primitive structures, respectively. Also during this time, the most

likely errored event recovery net is generated and is depicted in Figure 23.

C

P1: Strut Available tl: Find (Strut)
P2: Strut Found 12:Grasp (Strut)
P3: Strut Gra..sped. t3: Position(Strut)P4: Strut Posit=oneo
P5: Strut Inserted t4: Insert(Strut)
P6: Arm Available t5: Verify(Insertion)

Figure 21
GSCPN Generated For Strut Insertion

\

m

r

87

P1

P1 : Strut Available
P2: Strut Found
P3: Strut Grasped ,
P4: Strut _ositloneo
P5: Strut Inserted
P6: Arm Available

\

P5
t4

P4

t3

tl: Find (Strut)
t2: Grasp (Strut)
t3: Position(Strut)
t4: Insert(Strut)
t5: Verify(Insertion)

Figure 22
SCPN Generated For Strut Insertion

°

EP1: St (Strut)
EP2: Strut Found Et2: Grasp (Strut)
EP3: Strut Grasped Et3: Verify
EP4: Arm Available

Figure 23

Most Likely Errored Event Recovery Net
For Transition t2 of SCPN

7

88

[This is accomplished by using the nodes on either side of the SCPN transitions as the start and

end nodes of a recovery, identifying their equivalent nodes in the PSDB and beginning the

search procedure previously outlined. At this point, the intelligent machine begins functioning.

From Figure 21 and Figure 22, it is apparent that there are multiple points at which errors can

occur, since an error can occur at any transition in the Petri Net. For the purposes of this

example, the following three errors are considered possible:

1. There is no strut available in the strut holder.

2. The strut is grasped incorrectly and along the way to inserting

it, the strut is dropped.

3. The strut is inserted, but is inserted incorrectly, requiring a

slight perturbation (tolerance error) to put it into place.

Consider the f'trst error. The intelligent machine attempts to get a strut. One of the Global World

Model objects is a strut holder from which struts are dispensed. Since the only other struts the

intelligent machine knows about axe connected in a v-shape on the table, the only strut source is

the strut holder. Error number one occurs. This type of error is initially a Minor Error, as per

the definition. The intelligent machine sends out an error code indicating an error has occurred.

The External Communication Link of the Planning Coordinator picks up the error code and

raises ERR_FLAG. The Planning Coordinator notifies the main controller of the intelligent

machine that it wishes to perform an error recovery. Note that although the Planning

Coordinator is subservient to the main controller in the hierarchy of the intelligent mactu'ne the

Planning Coordinator will still notify the intelligent machine main controller that it wishes to

perform an error recovery. This is to ensure that the main controller has received the error code

generated by the intelligent machine. By design, the Planning Coordinator will not perform the

error recovery until the request is granted. If the request is not acknowledged, the Planning

89

Coordinator will request again. This will continue until the request is acknowledged in the

affirmative or in the negative. Here, the request is granted. The error recovery begins.

Initially, the intelligent machine wanted to get a strut. This function is complex and can be

decomposed into either a hierarchical, or a sequential series of more primitive actions. Such

would have been done in the generation of the CWM and PSDB yielding the GSCPN in Figure

24. Hence when the error recovery begins, the f_rst node of the error recovery sequence would

be the find, case frame.

EP1: St Strut)
EP2: Strut Found Et2: Grasp (Strut)
EP3: Strut Grasped. Et3: Position(Strut)EP4: Strut e-osit_onea
EP5: Strut Inserted Et4: Insert(Strut)
EP6: Ann Available Et5: Verity(Insertion)

Figure 24

SCPN Error Recovery Net Generated For Strut Insertion

t

\

Findable objects would be one of the internal objects of the case.frame. There are two

possibilities; either there are findable struts or there are none. Assume first that there are no

0 m

(

+'

findable struts. Thus, another error occurs. This error is a nested one and will result in another

error and another, all of which are the result of the initial error. After the first several errors,

within a given time frame, the Minor Error is reclassified as a Major Error. The errors continue,

becoming a cascade of nested errors. The Planning Coordinator recategorizes the Major Error

as an Irrecoverable Error and notifies the main controller of the intelligent machine. The

intelligent machine takes this information and must request assistance to obtain a solution.

Assume next that there arc findable struts. The recovery net represented in Figure 23 is

executed, yielding at its conclusion a strut in the grasp of the intelligent machine. First the strut

is found, its location being obtained and passed to the case frame represented by move_to. The

next state is that the strut is grasped. This is accomplished and the strut is ready to be inserted.

Consider now that error number two occurs. The strut is grasped incorrectly and along the way

to inserting it, the strut is dropped. This condition may or may not be noticed until the strut is to

be inserted. Either way, the solution is the same. As before a Minor Error occurs. The last good

state in the overall operation occurred when the strut was grasped. This is part of the

precondition that the strut was grasped. Hence, this function is performed again. First a strut is

found. In this case, the strut location is different than before. Assume that an attempt to grasp

the strut is made but cannot be done. A second Minor Error has occurred, this due to the fact

that the robot arm could not reach the found strut. This nested error is handled first. A new

strut is found and is obtainable. This strut is obtained. This not only solves the nested error

recovery, it solves a part of the initial error recovery. Once in the gripper, the strut is moved to

the insertion point. Figure 25 shows the sequence of actions outlining this recovery. Note, the

number of consecutive errors that would force a Minor Error into a Major Error is variable.

Here, two consecutive errors is not sufficient to cause a Major Error. It should also be noted that

unless the struts have some kind of identifying number or marking, there is no way that the

intelligent machine can determine which strut it has picked up. As a result there may be no

garbage collection unless specifically requested (i.e. in a new plan).

91

Finally, considerthaterrornumberthreeoccurs. Theinsertionof the strut appears to have gone

according to plan. However, on verification of the strut position by the intelligent machine, it is

found that the strut is not seated completely in its connector. The intelligent machine sends out

an error code. The error code is picked up by the External Communication Link of the Planning

Coordinator. The error information indicates that the error type is a tolerance error. This type

EP1: St (Strut)
EP2: Strut Found Et2: Grasp (Strut)
EP3: Strut Grasped Et'3: VerifyEP4: Arm Available

Figure 25

Error Recovery Net For Error Number 2

of error has a predefined recovery plan based on the last activity performed by the intelligent

machine. The recovery plan looks at what the results of the previous task are supposed to be

(i.e., the postconditions) and examines each one until a violation is found. Here the violation is,

strut insertion not locked in connector. Based on this violation the strut is further pressed until it

locks in place. The locking is verified by a verification process.

Once the error recovery has been performed, the intelligent machine returns to operation as

though there were no break in the continuity of the operation. This concludes the example. The

following section outlines the research goals and proposed work for the remainder of this thesis.

92

4.0 Research Goals and Proposed Work

The goal of this research is to provide a comprehensive, stand-alone, design architecture for the

establishment of robust, task level, error recovery and on-line planning on a single, integrated

platform. Although there has been previous work in error recovery and on-line planning, there

has been none that incorporates the two on a single platform, or defines explicitly at what level

in an intelligent hierarchy the two should be logically positioned.

4.1 Contributions To Date

The following contributions toward realizing the goal of this thesis have been made:

The design of the Planning Coordinator has been provided, which

incorporates task level error recovery and on-line planning on a

single integrated platform ['Farah 92a].

The level in an intelligent machine hierarchy at which error

recovery and on-line planning should logically take place has been

identified. Previous work had placed error recovery at too low a

level in the operating scheme of an intelligent machine hierarchy

[Farah 92a].

On-line planning as a specific instantiation of error recovery has

been proposed and is facilitated by the design of the Planning

Coordinator [Farah 92a].

93

The capability of either telepresentoperation or autonomous

operationof the Planning Coordinator functionality is designed

into the PlanningCoordinatorarchitecture,through the Planning

Coordinator'sError RecoveryGenerationAlgorithm [Farah92a].

Theapplicationof SemanticNetworksfor tasklevel error recovery

and on-line planning of intelligent tasks has been introduced

[Farah92b].

• A non-combinatorially explosive means of storing relatable

information for planning has been introduced [Farah 92b].

• A means of identifying robust plans within a Semantic Network

and retrieving them has been introduced [Farah 92b].

The use of Fuzzy Logic Techniques in combination with Semantic

Networks to create a Fuzzy Semantic Network used for error

recovery and on-line planning has been introduced [-Farah 92c].

7"-
(

The incorporation of both the links between object and/or activity

nodes of a Semantic Network, and the nodes themselves to create a

fuzzy weighting value is introduced, providing for the possibility

of numerous different connections between any two nodes [Farah

92c].

* An algorithm for the creation of a hierarchically organized plan

execution list in which an overall possibility of success number is

94

used to determine plan ordering for execution during an error

recovery is introduced [Farah 92c], and refined [Farah 92d].

The type limitation on the semantic network has been established

for the Primitive Structure Database. This limitation forces the

semantic network to deal with non-abstract concepts and actions.

An organism is provided from birth with innate capabilities and

knowledge about itself, its functions and its capabilities, regardless

of the environment in which it must function. Based upon this

core of knowledge, the organism is capable of deriving new

functionality. Similarly, an intelligent task level error recovery

system must start with a core of primitive structures defining itself,

its functions and its capabilities, and a core of rules. Together,

these cores form the knowledge base and restrictions from which

new functionality is derivable.

-- 95

7"

4.2 Expected Contributions

Investigation of the error recovery problem has revealed several challenging research areas: the

overall design architecture of the Planning Coordinator, the creation and maintenance of the

Primitive Structure Database, the identification and retrieval of plans from the Primitive

Structure Database, and the creation and maintenance of the Dynamic Fuzzy Rule Base. The

contributions listed in the previous section are the starting point for a more comprehensive

treatment of each of the areas. Anticipated contributions of this thesis include the following.

m

Completion of the design architecture that is called the

Planning Coordinator through the identification of any further

components required for error recovery and on-line planning.

Introduction of new, and refinement of previously introduced,

algorithms and procedures for:

1. Error Recovery Generation Algorithm

2. Plan Execution List Generation Algorithm

3. Primitive Structure Database Generation Algorithm

etc.

Identification of the limitations of the Planning Coordinator

Design Architecture, with a focus on the Primitive Structure

Database construct.

96

4.3 Proposed Work for the Thesis

There are four major research areas that this thesis may approach. They are:

1. The overall design architecture of the Planning Coordinator.

2. The creation, maintenance of, and plan identification and plan retrieval from

the Primitive Structure Database.

3. The creation and maintenance of the Dynamic Fuzzy Rule Base.

4. The establishment of the Global World Model to Current World Model

transformation.

The following addresses the f'rrst two of these four areas, and describes the anticipated work to

be done.

Complete the Parallel Planning Coordinator Design

Architecture: The Planning Coordinator is intended to be a

parallel design architecture. The completion of the parallel design

architecture necessitates:

1. Identification of the parallelizable components of the

Planning Coordinator.

2. Identification of additionally required handlers (i.e.,

components needed to administer the overhead of the parallel

architecture) for example: Bus-Master, External

Communication Link, etc.

3. Refinement of inter-component communication design based

on perceived communication needs.

97

o Refinement of the existing Planning Coordinator components

in order to facilitate parallelizability, where needed.

Establish the Limitations of the Planning Coordinator's

Primitive Structure Database: The focal point of this thesis

work is the Primitive Structure Database. While there are several

components and interfaces within the Planning Coordinator that

are in and of themselves research areas, it is the opinion of this

student that the crux of the Planning Coordinator design is the

Primitive Structure Database.

To establish the limitations of the Primitive Structure Database, it

is necessary to analyze the Primitive Structure Database with

respect to:

1. Memory Requirements

2. Size Complexity

3. Search Time Complexity

4. Node Constraints: Types of nodes that can be

accommodated by this design (i.e. abstract concepts

versus physical concepts -> GOd versus a gripper).

Evaluate the Planning Coordinator Architecture: Although no

other architectures which incorporate error recovery and on-line

planning into a single integrated platform have been uncovered, it

is necessary to measure the Planning Coordinator architecture

against some standard. This standard will necessarily be

98

intelligent machinearchitecturesand architectureswhich claim to

provideeithererrorrecoveryor on-lineplanning.

Thecriteriafor comparisonwill bebasedon :

Component choice:

• Component type

• Component complexity

• Number and complexity of levels.

(2

Tradeoffs :

• Design criteria (i.e., remote versus non-remote operation)

• Design flexibility

• Speed versus added robusmess

• Coherence of differing component levels

• Memory requirements

99

References

[Akatsu 91] Akatsu, M., Murata, T., and Kurihara, K., "Verification of Error

Recovery Specification for Distributed Data by Using Colored

Petri Nets," IEICE Transactions, E 74, 10, pp. 3159 - 3167,

October 1991.

[Albus 75] Albus, J.S., " A new approach to manipulation control: the

cerebellar model articulation controller," Transactions of the

ASME, Journal of Dynamics Systems, Measurement and Control,

97, pp. 220-227.

[A1bus 83] Albus, J.S., Mc Lean, C.E., Barbera, A.J. and Fitzgerald, M.L., "

Hierarchical Control for Robots in an Automated Factory,"

Proceedings of the Thirteenth ISIR Robots 7, 2, 13:29-43, April

1983.

[Albus 90a] Albus, LS., "A Theory of Intelligent Systems," Proceedings of the

1990 IEEE Conference on Intelligent Control, Philadelphia,

Pennsylvania, September 1990.

[Albus 90b] Albus, J.S., "The Role of World Modeling and Value Judgment in

Perception," Internal Document, National Institute of Standards

and Technology, May 1990.

[Brachman 85] Brachman, R.J., "On the epistemological status of semantic

networks," Associative Networks, (N.V. Findler,

100

Editor),Academic Press, Florida (1975).

Readings in Knowledge Representations,

California.

Reprinted (1985,

Morgan-Kaufman,

[Brooks 82] Brooks, R.A., "Symbolic Error Analysis and Robot Planning,"

International Journal of Robotics Research 1,4, 1982.

(.i

[Brooks 86]

[Cao 91]

[Cao 92]

Brooks, R.A.," A Robust Layered Control System for a Mobile

Robot," IEEE Journal of Robotics and Automation 2, pp. 14-23,

April 1986.

Cao, T. and Sanderson, A.C., "Task Sequence Planning in a Robot

Workcell Using AND/OR Nets," Proceedings of the IEEE

International Symposium on Intelligent Control, pp. 239-244,

Arlington, Virginia, August 1991.

Cao,T. and Sanderson, A.C.," Sensor-based Error Recovery for

Robotic Task Sequences Using Fuzzy Petri Nets," Proceedings of

the 1992 IEEE Robotics and Automation Conference, Nice,

France, May 1992.

[Chen 90]

[Chang 89a]

Chen, S., Ke, J. and Chang, J., "Knowledge Representation Using

Fuzzy Petri Nets," IEEE Transactions on Knowledge and Data

Engineering 2, 3, pp. 3I I-3 I9, September 1990.

Chang, A.J., DiCesare, F., and Goldbogen, G., "An Algorithm for

Consmacting a Failure Propagation Tree in Manufacturing

I01

Systems," Proceedings of IEEE Intelligent Controls Conference,

Albany, New York, September, 1989, pp. 38-43.

[Chang 89b] Chang, S.J., DiCesare, F., and Goldbogen, G., "The Generation of

Diagnostic Heuristics for Automated Error Recovery in

Manufacturing Workstations," Proceedings of IEEE Robotics and

Automation Conference, Scottsdale, Arizona, May 1989, pp. 522-

527.

[de Mello86] de Mello, L.S.H., and Sanderson, A.C., "AND/OR Graph

Representation for Assembly Plans," Proceedings of the AAAI 86

Conference, Philadelphia, Pennsylvania, 1986.

[de Mello88] de Mello, L.S.H., and Sanderson, A.C., "Planning Repair

Sequences Using the AND/OR Graph Representation of Assembly

Plans," Proceedings of the IEEE 1988 Applications of Artificial

Intelligence, Orlando, Florida, March 1988, pp. 1861-1862.

[DiCesare 88] DiCesare, F. and Jeng, M.D., "A Review of Synthesis Techniques

for Petri Nets, "CIM Internal Document, Rensselaer Polytechnic

Institute, Troy, New York, 1988.

[Farah 92a] Farah, .l.J., and Kelley, R.B., "The Planning Coordinator For

Robust Error Recovery And Dynamic On-Line Planning Of

Robotic Tasks," Proceedings of the 1992 International Conference

On Intelligent Robots and Systems, Raleigh, North Carolina, pp.

1262-1269, July 1992.

102

[Farah92b]

[Farah 92c]

[Farah 92d]

Farah, J.J., and Kelley, R.B., "Utilizing Semantic Networks to

Database and Retrieve Generalized Stochastic Colored Petri Nets,"

Proceedings of the Fourth Annual Conference on Intelligent

Robotic Systems for Space Exploration, Troy, New York,

September 1992.

Farah, J.J. and Kelley, R.B., "Identifying Relational Error

Recovery / On-Line Plans Utilizing Fuzzy Logic Techniques and

Semantic Networks," submitted for publication to the 1993 IEEE

International Conference on Fuzzy Logic.

Farah, J.J, and Kelley, R.B., "Utilizing Semantic Networks and

Fuzzy Logic for the Creation of the Planning Coordinator's

Primitive Structure Database," submitted for publication to the

1993 IEEE International Conference on Robotics and Automation.

[Fielding 87]

[Fielding 88]

Fielding, P. and DiCesare, F., " A Review of, and New Concepts

for, Intelligent Automated Error Recovery in Manufacturing

Workstations, " Proceedings of the 1987 IEEE International

Symposium on Intelligent Control, Philadelphia, Pennsylvania,

January 18-20, 1987.

Fielding, P., DiCesare, F., and Goldbogen, G." Error Recovery in

Automated Manufacturing Through the Augmentation of

Programmed Processes," Journal of Robotic Systems 5, 4, August

1988, pp. 337-362.

103

7 [Fillmore 86] Fillmore, C.J., " The case for Case," Universals in Linguistic

Theory, (E. Bach and R.T. Harms, Editors), Holt, Reinhart and

Winston, New York, 1986.

[Gini 83] Gini, G., and Gini, M., "Towards Automatic Error Recovery in

Robot Programs," Proceedings of the Eighth International Joint

Conference on Artificial Intelligence, Karlsruhe, West Germany,

August 8-12, 1983, pp. 821-823.

[Gini 85b]

[Gini 85c]

[Hendler 92]

Gini, M., Doshi, R., Garber, S., Gluch, M., Smith, R., and

Zaulkeman, I.," Symbolic Reasoning as a Basis for Automatic

Error Recovery in Robots," Technical Report TR 85-24,

Department of Computer Science, University of Minnesota,

Minneapolis, July 1985.

Gini, M. and Smith, R., " Reliable Real-Time Robot Operation

Employing Intelligent Forward Recovery," Technical Report TR

85-30, Department of Computer Science, University of Minnesota,

Minneapolis, September, 1985.

Hendler, J.A., " Massively Parallel Marker-Passing In Semantic

Networks, " Computers, Mathematics & Applications, 23, 2-5, pp.

277-291, 1992.

[HSrmann 89] HSrmann, A., "A Petri Net Based Control Architecture for a Multi-

Robot System," (Paper does not show where it came from. I'I1 find

out though), 1989.

104

[Koh 88]

[Kosko 86]

Koh, I. and DiCesare, F., "Modular Transformation Methods for

Generalized Petri Nets and Their Applications to Automated

Systems," Internal Document, Rensselaer Polytechnic Institute,

Troy, New York, 1988.

Kosko, B., "Fuzzy Cognitive Maps," International Journal of Man

Machine Studies, 24, pp. 65-75, January 1986.

[Kosko 87] Kosko, B., " Adaptive Inference in Fuzzy Knowledge Networks,"

Proceedings of the ICNN, 3, pp. 261-268, 1987.

.°_

[Kumaradjaja

[Lee 83a]

89] Kumaradjaja, R.," A Causal Reasoning Model For Plan

Generation, Execution, Monitoring and Error Recovery in

Automated Manufacturing Systems," Ph.D. Thesis, Department of

Electrical, Computer and System Engineering, Rensselaer

Polytechnic Institute, Troy, New York, 1989.

Lee, M.H., Barnes, D.P., and Hardy, N.W.," A Control and

Monitoring System for Multiple-Sensor Industrial Robots,"

Proceedings of the Third International Conference in Robot Vision

and Sensory Controls, Boston, Massachusetts, November 1983.

[Lee 84] Lee, M.H., Barnes, D.P., and Hardy, N.W., "Research into

Automatic Error Recovery," U.K. Robotics Research, London,

UK, 1984.

I05

"7" [Lee 85] Lee, M.H., Barnes, D.P., and Hardy, N.W., "Research into Error

Recovery for Sensory Robots," Sensory Review 5, 4, October

1983, pp. 194-197.

[Lee 87] Lee, D.Y., "An Artificial Intelligence Approach for Handling

Errors in Automated Manufacturing," M.S. Thesis, Department of

Electrical, Computer, and System Engineering, Rensselaer

Polytechnic Institute, Troy, New York, May 1987.

[Looney 88] I.x)oney, C.G., "Fuzzy Petri Nets for Rule-Based Decision

making," IEEE Transactions on Systems, Man and Cybernetics,

18, 1, pp. 178-183, 1988.

[MacRandal 88] MacRandal, D., "Semantic Networks," Approaches to

Knowledge Representation: An Introduction, Research Studies

Press / John Wiley & Sons, Letchworth, Hertfordshire / New

York, 1988.

[Masterman 62] Masterman, M., "Semantic message detection for machine

translation, using an interlingua", 1961 International Conference

on Machine Translation of Languages and Applied Language

Analysis - Proceedings, Her Majesty's Stationary Office, London,

1962.

[Murata 84] Murata, T., "Modeling and Analysis of Concurrent Systems,"

Handbook of Systems Engineering, C.R. Vick and C.V.

106

Ramamoorthy,Editors,New York:Van NostrandReinhold, 1984,

chapter3.

[Murata89] Murata, T., and Komoda,N., " RealTime Control Software for

TransactionProcessingBasedon Colored Safe Petri Net Model,"

The Journal of Real Time Systems, 1, pp. 299-312, 1989.

[Narahari 88] Narahari, Y., and Viswanadham, N., "Stochastic Petri Net Models

for Performance Evaluation of Automated Manufacturing

Systems," Elsevier Science Publishers B.V. (North Holland),

1988.

(
[Nilsson 80] Nilsson, N.J., Principles of ArtifiCial Intelligence, Morgan-

Kaufman, California, 1980, chapter 9.

[Norvig 89] Norvig, P., "Marker Passing as a weak method for text

inferencing," Cognitive Science, 13, 4, 1989.

[Peter,son 81] Peterson, J.L., "Petri Net Theory and the Modeling of Systems,"

Englewood Cliff: Prentice-Hall, 1981.

[Quillian 68] Quillian, R.M., "Semantic Memory," Semantic Information

Processing (M. Minsky, Editor), pp. 216-270, The MIT Press,

Cambridge, Massachusetts, 1968.

4,

107

"7" [Quillian 69] Quillian, M.R., "The teachable language comprehender: A

Simulation program and theory of language," Communications of

the ACM, 12, pp. 459-476, 1969.

[Richens 56a] Richens, R. H., "Preprogramming for Mechanical-Translation,"

Mechanical Translation, 3, 1, 1956.

[Richens 56b] Richens, R. H., "Report on research of the Cambridge Language

Unit," Mechanical Translation, 3, 2, 1956.

[Riesbeck 86] Riesbeck, C. and Martin, C., "Direct memory accessing parsing,"

Experience, Memory & Reasoning (J. Kolodner and C.K.

Riesbeck, Editors), Lawrence Erlbaum, 1986.

[Ritchie and Thompson 74] Ritchie, D.M. and Thompson, K., "The UNIX

Time-Sharing System," Communications of the ACM, 17, 7, pp.

365-375, July 1974.

[Sanderson 87a] Sanderson, A.C. Peshkin, M.A., and de Mello, L.S.H., "Task

Planning for Robotic Manipulation in Space Applications,"

submitted to IEEE Transactions on Aerospace and Electronic

Systems, November, 1987.

[Sanderson 87b] Sanderson, A.C., and de Mello, L.S.H., ''Task Planing and

Control Synthesis for Flexible Assembly Systems," NATO ASI

Series: Machine Intelligence and Knowledge Engineering for

Robotic Applications, Springer-Verlag, Berlin, 1987.

108

[Saridis 77] Saridis, G.N., "Self-organizing Controls of Stochastic Systems,"

Marcel Dekker, New York, 1977.

[Saridis 79] Saridis, G.N., "Toward the Realization of Intelligent Controls,"

IEEE Proceedings, Vol. 67, No. 8, 1979.

[Saridis 83]

[Saridis 85]

[Saridis 88]

Saridis, G.N., "Intelligent Robotic Control," IEEE Transactions on

Automatic Control, 29, 4, 1983.

Saridis, G.N., "Foundations of The Theory of Intelligent Control,"

Proceedings IEEE Workshop on Intelligent Controls, pp. 23,

Rensselaer Polytechnic Institute, Troy, New York, 1985.

Saridis, G.N., "Intelligent Machines : Distributed versus

Hierarchical Intelligence," Proceedings IFAC/IMAC International

Symposium on Distributed Intelligence Systems (Varna, Belgium),

pp. 34-39, 1988.

[Shastri 88] Shastri, L., Semantic Networks: Art Evidential Formalization and

its Connectionist Realization, Morgan-Kaufman, California, 1988.

[Silberschatz 88] Silberschatz A., and Peterson, J.L.,_ r.Ql2e..r.gliag.

Concepts, Addison-Wesley, New York, 1988, chapters 11 and 12.

[Simmons 73] Simmons, R.F., "Semantic Networks: Their computation and use

for understanding English sentences," Computer Models of

-- 109

[Smith 86]

[Srinivas76]

Thought and Language,(R. Schankand K.M. Colby, Editors),

W.H. Freeman,Chicago,1973.

Smith,R. andGini, M., " Robottracking andControl Issuesin an

Intelligent Error Recovery System," Proceedings of the 1986 IEEE

International Conference on Robotics and Automation, IEEE

Computer Society, 4, 7, pp. 1070-1075, 1986.

Srinivas, S., "Error Recovery in Robots," Ph.D. Thesis,

Department of Computer Science, California Institute of

Technology, Pasadena, California, 1976.

[Srinivas 78] Srinivas, S., "Error Recovery in Robots Through Failure Reason

Analysis, "AFIPS Conference Proceedings, 1978 National

Computer Conference, AFIPS Press, Monrvale, New Jersey, 1978,

pp. 275-282.

[Styblinski 88] Styblinski, M.A., and Meyer, B.D., "Fuzzy Cognitive Maps,

Signal Flow Graphs and Qualitative Circuit Analysis," Proceedings

of the ICNN, 2 pp. 549-556, 1988.

[Thompson 78] Thompson, K., "UNIX Implementation," The Bell System

Technical Journal, 57, 6, part 2, pp. 1931-1946, July/August

1978.

[Thompson 92] Thompson, K., Electronic Mail Correspondence, October 1992.

110

[Watson 89] Watson, J.F. III, "A Comparison of Performance Evaluation

Methodologies for Manufacturing Systems," M.S. Thesis,

Department of Electrical Computer and Systems Engineering,

Rensselaer Polytechnic Institute, Troy, New York, 1989.

[Watson 9ia] Watson, J.F. III, and Desrochers, A.A., "Applying Generalized

Stochastic Petfi Nets to Manufacturing Systems Containing Non-

Exponential Transition Functions," IEEE Transactions on Systems,

Man and Cybernetics, 6:1008-1017, September/October, 1991.

[Watson 91b] Watson, J.F. III, and Desrochers, A.A., "Applying Generalized

Stochastic Petri Nets to Manufacturing Systems Containing Non-

Exponential Transition Functions, "Proceedings of 1991 IEEE

Robotics and Automation Conference, pp. 366-371, Sacramento,

California, April 1991.

[Watson 92a] Watson, J.F. III, and Desrochers, A.A., "Methods for Estimating

State-Space Size of Petfi Nets," Proceedings of 1992 IEEE

Robotics and Automation Conference, Nice, France, May 1992.

[Watson92b] Watson, J.F. III, and Desrochers, A.A., "State Space Size

Estimation of Conservative Petri Nets," Proceedings of 1992 IEEE

Robotics and Automation Conference, Nice, France, May 1992.

[Williams 86] Williams, D.J. Rogers, P. and Upton, D.M., "Programming and

Recovery on Cells for Factory Automation," The International

111

[Yu 90]

[Zadeh 84]

[Zadeh 84a]

Journal of Advanced Manufacturing Technology 1,2, pp. 37-47,

1986.

Yu, Y., and Simmons, R., "Truly parallel understanding of text,"

Proceedings of AAAI-90, July 1990.

Zadeh, L.A., "Making computers think like people," IEEE

Spectrum, pp. 26 - 32, August 1984.

Zadeh, L.A., "Crisp Sets and Fuzzy Sets", from Fuzzy Logic Text

(Must find exact book name), chapter 1, 1984.

[Zhou 88] Zhou, M.C., and DiCesare, F., "Adaptive Design of Petri Net

Controllers for Automatic Error Recovery," Proceedings of the

Third IEEE International Conference on Intelligent Control,

Arlington, Virginia, August 24-25, 1988.

[Zhou 89] Zhou, M.C., and DiCesare, F.," Adaptive Design of Petri Net

Controllers for Error Recovery in Automated Manufacturing

Systems," IEEE Transactions on Systems, Man and Cybernetics,

19, 5, 1989.

Bibliography

Akatsu, M. , Murata, T., and Kurihara, K., "Verification of Error Recovery

Specification for Distributed Data by Using Colored Petri Nets," IEICE

Transactions, E 74, 10, pp. 3159 - 3167, October 1991.

Albus, J.S., "A new approach to manipulation control: the cerebeUar model

articulation controller," Transactions of the ASME, Journal of Dynamics

Systems, Measurement and Control, 97, pp. 220-227.

Albus, J.S., Mc Lean, C.E., Barbera, A.J. and Fitzgerald, M.L., " Hierarchical

Control for Robots in an Automated Factory," Proceedings of the Thirteenth

ISIR Robots 7, 2, 13:29-43, April 1983.

Albus, 1.S., "A Theory of Intelligent Systems," Proceedings of the 1990 IEEE

Conference on Intelligent Control, Philadelphia, Pennsylvania, September 1990.

Albus, J.S., "The Role of World Modeling and Value Judgment in Perception,"

Internal Document, National Institute of Standards and Technology, May 1990.

Bonissone, P. , "Expert Systems in Computer Engineering," Fuzzy Sets and

Expert Systems Class Notes, Rensselaer Polytechnic Institute, Department of

Electrical Computer and System Engineering, Troy, New York.

Brachman, R.J., "On the epistemological status of semantic networks,"

Associative Networks, (N.V. Findler, Editor),Academic Press, Florida (1975).

112

Reprinted (1985, Readings in_ Knowledge Representations, Morgan-Kaufman,

California.

Brooks, R.A., "Symbolic Error Analysis and Robot Planning," International

Journal of Robotics Research 1,4, 1982.

Brooks, R.A., "Intelligence Without Reason," Proceedings of the 1990 AIAA

Conference, Sydney, Australia, pp. 570-590, 1990.

113

Brooks, R.A.," A Robust Layered Control System for a Mobile Robot," IEEE

Journal of Robotics and Automation 2, pp. 14-23, April 1986.

Cao, T. and Sanderson, A.C., "Task Sequence Planning in a Robot WorkceU

Using AND/OR Nets," Proceedings of the IEEE International Symposium on

Intelligent Control, pp. 239-244, Arlington, Virginia, August 1991.

Cao, T. and Sanderson, A.C.," Sensor-based Error Recovery for Robotic Task

Sequences Using Fuzzy Petri Nets," Proceedings of the 1992 IEEE Robotics and

Automation Conference, Nice, France, May 1992.

Chen, N.S., Yu, H.P., and Huang, S.T., "A self-stabilizing algorithm for

constructing spanning trees," Information Processing Letters, 39, pp. 147-151,

1991.

Chert, S., Ke, J. and Chang, J., "Knowledge Representation Using Fuzzy Petri

Nets," IEEE Transactions on Knowledge and Data Engineering 2, 3, pp. 311-

319, September 1990.

114

,

Chang, A.J., DiCesare, F., and Goldbogen, G., "An Algorithm for Constructing

a Failure Propagation Tree in Manufacturing Systems," Proceedings of IEEE

Intelligent Controls Conference, Albany, New York, September, 1989, pp. 38-

43.

Chang, S.J., DiCesare, F., and Goldbogen, G., '_l'he Generation of Diagnostic

Heuristics for Automated Error Recovery in Manufacturing Workstations,"

Proceedings of IEEE Robotics and Automation Conference, Scottsdale,

Arizona, May 1989, pp. 522-527.

de Mello, L.S.H., and Sanderson, A.C., "AND/OR Graph Representation for

Assembly Plans," Proceedings of the AAAI 86 Conference, Philadelphia,

Pennsylvania, 1986.

de Mello, L.S.H., and Sanderson, A.C., "Planning Repair Sequences Using the

AND/OR Graph Representation of Assembly Plans," Proceedings of the IEEE

1988 Applications of Artificial Intelligence, Orlando, Florida, March 1988, pp.

1861-1862.

DiCesare, F. and Jeng, M.D., "A Review of Synthesis Techniques for Petri Nets,

"CIM Internal Document, Rensselaer Polytechnic Institute, Troy, New York,

1988.

Donald, B.R., "A Geometric Approach to Error Detection and Recovery for

Robot Motion Planning with Uncertainty," Artificial Intelligence, 37, Elsevier

Science Publishers B.V., (North Holland), pp. 223-271, 1988.

115

-T

Evens, M.W., Relational models of the lexicon: Representing Knowledge in

Semantic Networks, Cambridge University Press, New York, 1988.

i

m

Fas-ah, J.J., and Kelley, R.B., "The Planning Coordinator For Robust Error

Recovery And Dynamic On-Line Planning Of Robotic Tasks," Proceedings of

the 1992 International Conference On Intelligent Robots and Systems, Raleigh,

North Carolina, pp. 1262-1269, July 1992.

Farah, J.J., and Kelley, R.B., "Utilizing Semantic Networks to Database and

Retrieve Generalized Stochastic Colored Petri Nets," Proceedings of the Fourth

Annual Conference on Intelligent Robotic Systems for Space Exploration, Troy,

New York, September 1992.

Farah, J.J. and Kelley, R.B., "Identifying Relational Error Recovery / On-Line

Plans Utilizing Fuzzy Logic Techniques and Semantic Networks," submitted for

publication to the 1993 IEEE International Conference on Fuzzy Logic.

Farah, J.J, and Kelley, R.B., "Utilizing Semantic Networks and Fuzzy Logic for

the Creation of the Planning Coordinator's Primitive Structure Database,"

submitted for publication to the 1993 IEEE International Conference on

Robotics and Automation.

Fielding, P. and DiCesare, F., " A Review of, and New Concepts for, Intelligent

Automated Error Recovery in Manufacturing Workstations, "Proceedings of the

1987 IEEE International Symposium on Intelligent Control, Philadelphia,

Pennsylvania, January 18-20, 1987.

116

.

Fielding, P., DiCesare, F., and Goldbogen, G." Error Recovery in Automated

Manufacturing Through the Augmentation of Programmed Processes," Journal

of Robotic Systems 5, 4, August 1988, pp. 337-362.

Fillmore, C.J., "The case for Case," Universals in Linguistic Theory, (E. Bach

and R.T. Harms, Editors), Holt, Reinhart and Winston, New York, 1986.

Freedman, P., "Modeling the actions of an intervention robot," Proceedings of

the 1992 IEEE International Conference on Robotics and Automation, Nice,

France, pp. 2697-2701, 1992.

(
Gini, G., and Gini, M., "Towards Automatic Error Recovery 'in Robot

Programs," Proceedings of the Eighth International Joint Conference on

Artificial Intelligence, Karlsruhe, West Germany, August 8-12, 1983, pp. 821-

823.

Gini, M., Doshi, R., Garber, S., Gluch, M., Smith, R., and Zaulkernan, I.,"

Symbolic Reasoning as a Basis for Automatic Error Recovery in Robots,"

Technical Report TR 85-24, Department of Computer Science, University of

Minnesota, Minneapolis, July 1985.

Gini, M. and Smith, R., "Reliable Real-Time Robot Operation Employing

Intelligent Forward Recovery," Technical Report TR 85-30, Department of

Computer Science, University of Minnesota, Minneapolis, September, 1985.

117

Guo, D., DiCesare,F., and Zhou, M.C., "Moment Generating Function

Approach to Performance Analysis of Extended Stochastic Petri Nets,"

Proceedings of the 1991 IEEE International Conference on Robotics and

Automation, Sacramento, California, 1991.

Hendler, J.A., " Massively Parallel Marker-Passing In Semantic Networks, "

Computers, Mathematics & Applications, 23, 2-5, pp. 277-291, 1992.

H/3rmann, A., "A Petri Net Based Control Architecture for a Multi-Robot

System," (Paper does not show where it came from. I'll find out though), 1989.

Huber, P., Jensen, K., and Shapiro, R.M., "Hierarchies in Coloured Petri Nets,"

Advances in Petri Nets (19901. Lecture Notes in Computer Science, 483,

Springer, New York, pp. 313-341, 1990.

Kasturia, E., DiCesare, F., Desrochers, A., "Real Time Control of Multilevel

Manufacturing Systems Using Colored Petri Nets," Proceedings of the 1988

IEEE International Conference on Robotics and Automation, Philadelphia,

Pennsylvania, 1988.

Koh, I. and DiCesare, F., "Modular Transformation Methods for Generalized

Petri Nets and Their Applications to Automated Systems," Internal Document,

Rensselaer Polytechnic Institute, Troy, New York, 1988.

Kosko, B., "Fuzzy Cognitive Maps," International Journal of Man Machine

Studies, 24, pp. 65-75, January 1986.

118

f

(
Kosko, B., " Adaptive Inference in Fuzzy Knowledge Networks," Proceedings

of the ICNN, 3, pp. 261-268, 1987.

Kumaradjaja, R.," A Causal Reasoning Model For Plan Generation, Execution,

Monitoring and Error Recovery in Automated Manufacturing Systems," Ph.D.

Thesis, Department of Electrical, Computer and System Engineering,

Rensselaer Polytechnic Institute, Troy, New York, 1989.

Lee, M.H., Barnes, D.P., and Hardy, N.W.," A Control and Monitoring System

for Multiple-Sensor Industrial Robots," Proceedings of the Third International

Conference in Robot Vision and Sensory Controls, Boston, Massachusetts,

November 1983.

Lee, M.H., Barnes, D.P., and Hardy, N.W., "Research into Automatic Error

Recovery," U.K. Robotics Research, London, UK, 1984.

Lee, M.H., Barnes, D.P., and Hardy, N.W., "Research into Error Recovery for

Sensory Robots," Sensory Review 5, 4, October 1983, pp. 194-197.

Lee, D.Y., "An Artificial Intelligence Approach for Handling Errors in

Automated Manufacturing," M.S. Thesis, Department of Electrical, Computer,

and System Engineering, Rensselaer Polytechnic Institute, Troy, New York,

May 1987.

Lehman, F., "Semantic Networks," Computers Mathematics Applications, 23, 2-

5, pp. 1-50, 1992.

119

,'7-" Looney, C.G., "Fuzzy Petri Nets for Rule-Based Decision making," IEEE

Transactions on Systems, Man and Cybernetics, 18, 1, pp. 178-183, 1988.

MacRandal, D., "Semantic Networks," Approaches to Knowledge

Representation: An Introduction, Research Studies Press / John Wiley & Sons,

Letchworth, Hertfordshire / New York, 1988.

Masterman, M., "Semantic message detection for machine translation, using an

interlingua", 1961 International Conference

Languages and Applied Language Analysis

Stationary Office, London, 1962.

on Machine Translation of

- Proceedings, Her Majesty's

Mtwata, T., "Modeling and Analysis of Concurrent Systems," Handbook of

Systems Engineering, C.R. Vick and C.V. Ramamoorthy, Editors, New

York:Van Nostrand Reinhold, 1984, chapter 3.

Murata, T., and Komoda, N., " Real Time Control Software for Transaction

Processing Based on Colored Safe Petri Net Model," The Journal of Real Time

Systems, 1, pp. 299-312, 1989.

Narahari, Y., and Viswanadham, N., "Stochastic Petri Net Models for

Performance Evaluation of Automated Manufacturing Systems," Elsevier

Science Publishers B.V. (North Holland), 1988.

u

Narahari, Y., and Viswanadham, N., " A Petri Net Approach To The Modeling

And Analysis Of Flexible Manufacturing Systems," Annals of Operations

Research, 3, pp. 449-472, 1985.

120

Nilsson, N.J., Principles of Artificial Intelligence, Morgan-Kaufman, California,

1980, chapter 9.

Norvig, P., "Marker Passing as a weak method for text inferencing," Cognitive

Science, 13, 4, 1989.

Penders, J.S.J.H., "Error Recovery In A Robot System," Proceedings of the

1989 Conference on Intelligent Autonomous Systems 2, Amsterdam, The

Netherlands, 1989.

f:

Peterson, J.L., "Petri Net Theory and the Modeling of Systems," Englewood

CUff: Prentice-Hall, 1981.

Quillian, R.M., "Semantic Memory," Semantic Information Processing (M.

Minsky, Editor), pp. 216-270, The MIT Press, Cambridge, Massachusetts, 1968.

Quillian, M.R., "The teachable language comprehender: A Simulation program

and theory of language," Communications of the ACM, 12, pp. 459-476, 1969.

Richens, R. H., "Preprogramming for Mechanical-Translation," Mechanical

Translation, 3, 1, 1956.

Richens, R. H., "Report on research of the Cambridge Language Unit,"

Mechanical Translation, 3, 2, 1956.

121

(
Riesbeck, C. and Martin, C., "Direct memory accessing parsing," Experience,

Memory & Reasoning (J. Kolodner and C.K. Riesbeck, Editors), Lawrence

Erlbaum, 1986.

Ritchie, D.M. and Thompson, K., "The UNIX Time-Sharing System,"

Communications of the ACM, 17, 7, pp. 365-375, July 1974.

Sanderson, A.C. Peshkin, M.A., and de Mello, L.S.H., "Task Planning for

Robotic Manipulation in Space Applications," submitted to IEEE Transactions

on Aerospace and Electronic Systems, November, 1987.

Sanderson, A.C., and de Mello, L.S.H., "Task Planing and Control Synthesis for

Flexible Assembly Systems," NATO ASI Series: Machine Intelligence and

Knowledge Engineering for Robotic Applications, Springer-Verlag, Berlin,

1987.

Saridis, G.N., "Self-organizing Controls of Stochastic Systems," Marcel Dekker,

New York, 1977.

Saridis, G.N., "roward the Realization of Intelligent Controls," IEEE

Proceedings, Vol. 67, No. 8, 1979.

Saridis, G.N., "Intelligent Robotic Control," IEEE Transactions on Automatic

Control, 29, 4, 1983.

Saridis, G.N., and Graham, LH., "Linguistic Decision Schemata for Intelligent

Robots," Pergamon Press Limited, 20,1 pp. 121 - 126, 1984.

122

C

Saridis, G.N., "Foundations of The Theory of Intelligent Control," Proceedings

IEEE Workshop on Intelligent Controls, pp. 23, Rensselaer Polytechnic

Institute, Troy, New York, 1985.

Saridis, G.N., "Intelligent Machines : Distributed versus Hierarchical

Intelligence," Proceedings IFAC/IMAC International Symposium on Distributed

Intelligence Systems (Varna, Bclgium), pp. 34-39, 1988.

Shastri, L., Semantic Networks: An Evidential Formalization and its

Connectionist Realization, Morgan-Kaufman, California, 1988.

Silberschatz A., and Peterson, J.L.,_ Operating Systems Concepts, Addison-

Wesley, New York, 1988, chapters 1I and 12.

Simmons, R.F., "Semantic Networks: Their computation and use for

understanding English sentences," Computer Models of Thought and Language,

(IL Schank and K.M. Colby, Editors), W.H. Freeman, Chicago, 1973.

Smith, R. and Gini, M., " Robot tracking and Control Issues in an Intelligent

Error Recovery System," Proceedings of the 1986 IEEE International

Conference on Robotics and Automation, IEEE Computer Society, 4, 7, pp.

1070-1075, 1986.

Sowa, J.F., Editor, Principles of Semantic Networks: Explorations in the

Representation of Knowledge, Morgan Kaufman, California, 1992.

123

Srinivas, S., "Error Recovery in Robots," Ph.D. Thesis, Department of

Computer Science, California Institute of Technology, Pasadena, California,

1976.

Srinivas, S., "Error Recovery in Robots Through Failure Reason Analysis,

"AFIPS Conference Proceedings, 1978 National Computer Conference, AFIPS

Press, Montvale, New Jersey, 1978, pp. 275-282.

Styblinski, M.A., and Meyer, B.D., "Fuzzy Cognitive Maps, Signal Flow

Graphs and Qualitative Circuit Analysis," Proceedings of the ICNN, 2 pp. 549-

556, 1988.

Thompson, K., "UNIX Implementation," The Bell System Technical Journal,

57, 6, part 2, pp. 1931-1946, July/August 1978.

Thompson, K., Electronic Mail Correspondence, October 1992.

Tyrrell, A.M., and Holding, D.J., "Design of Reliable Software in Distributed

Systems Using the Conversation Scheme," IEEE Transactions on Software

Engineering, SE-12, 9, September 1986.

Vogler, W., "Failure Semantics Based On Interval Semiwords Is A Congruence

For Refinement," Distributed Computing, 4, pp. 139-162, 1991.

124

. Watson, LF. HI, "A Comparison of Performance Evaluation Methodologies for

Manufacturing Systems," M.S. Thesis, Department of Electrical Computer and

Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York, 1989.

Watson, J.F. HI, and Desrochers, A.A., "Applying Generalized Stochastic Petri

Nets to Manufacturing Systems Containing Non-Exponential Transition

Functions," IEEE Transactions on Systems, Man and Cybernetics, 6:1008-1017,

September/October, 199 I.

C

Watson, J.F. III, and Desrochers, A.A., "Applying Generalized Stochastic Petri

Nets to Manufacturing Systems Containing Non-Exponential Transition

Functions, "Proceedings of 1991 IEEE Robotics and Automation Conference,

pp. 366-371, Sacramento, California, April 1991.

Watson, J.F. III, and Desrochers, A.A., "Methods for Estimating State-Space

Size of Petri Nets," Proceedings of 1992 IEEE Robotics and Automation

Conference, Nice, France, May 1992.

Watson, J.F. HI, and Desrochers, A.A., "State Space Size Estimation of

Conservative Petri Nets," Proceedings of 1992 IEEE Robotics and Automation

Conference, Nice, France, May 1992.

Williams, D.J. Rogers, P. and Upton, D.M., "Programming and Recovery on

Ceils for Factory Automation," The International Journal of Advanced

Manufacturing Technology 1,2, pp. 37-47, 1986.

125

-7 Yu, Y., and Simmons, R., "Truly parallel understanding of text," Proceedings of

AAAI-90, July 1990.

m

Zadeh, L.A., "Making computers think like people," IEEE Spectrum,

32, August 1984.

pp. 26 -

Zadeh, L.A., "Crisp Sets and Fuzzy Sets", from Fuzzy Logic Text (Must find

exact book name), chapter 1, 1984.

Zhou, M.C., and DiCesare, F., "Adaptive Design of Petri Net Controllers for

Automatic Error Recovery," Proceedings of the Third IEEE International

Conference on Intelligent Control, Arlington, Virginia, August 24-25, 1988.

Zhou, M.C., and DiCesare, F.," Adaptive Design of Petri Net Controllers for

Error Recovery in Automated Manufacturing Systems," IEEE Transactions on

Systems, Man and Cybernetics, 19, 5, 1989.

